
LAMP-TR-135
CS-TR-4831
UMIACS-TR-2006-47

April 2007

A Survey of Statistical Machine Translation

Adam Lopez

Computational Linguistics and Information Processing Laboratory
Institute for Advanced Computer Studies

Department of Computer Science
University of Maryland

College Park, MD 20742
alopez@cs.umd.edu

Abstract

Statistical machine translation (SMT) treats the translation of natural language as a machine learning
problem. By examining many samples of human-produced translation, SMT algorithms automatically
learn how to translate. SMT has made tremendous strides in less than two decades, and many popular
techniques have only emerged within the last few years. This survey presents a tutorial overview of
state-of-the-art SMT at the beginning of 2007. We begin with the context of the current research, and
then move to a formal problem description and an overview of the four main subproblems: translational
equivalence modeling, mathematical modeling, parameter estimation, and decoding. Along the way, we
present a taxonomy of some different approaches within these areas. We conclude with an overview of
evaluation and notes on future directions.

This is a revised draft of a paper currently under review. The contents may change in later drafts. Please send any
comments, questions, or corrections to alopez@cs.umd.edu. Feel free to cite as University of Maryland technical report
UMIACS-TR-2006-47. The support of this research by the GALE program of the Defense Advanced Research Projects
Agency, Contract No. HR0011-06-2-0001, ONR MURI Contract FCPO.810548265, and Department of Defense contract
RD-02-5700 is acknowledged.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
APR 2007 2. REPORT TYPE

3. DATES COVERED
 00-00-2007 to 00-00-2007

4. TITLE AND SUBTITLE
A Survey of Statistical Machine Translation

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Maryland,Institute for Advanced Computer
Studies,Computational Linguistics and Information Processing
Laboratory,College Park,MD,20742

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

50

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Contents

1 Introduction 1
1.1 Background and Context . 1
1.2 Formal Description . 2

2 Translational Equivalence Modeling 3
2.1 Finite-State Transducer Models . 4

2.1.1 Word-Based Models . 5
2.1.2 Phrase-Based Models . 7

2.2 Synchronous Context-Free Grammar Models . 9
2.2.1 Bracketing Grammars . 11
2.2.2 Syntax-Based Grammars . 13
2.2.3 Hierarchical Phrase-Based Translation . 13
2.2.4 Syntactic Phrase-Based Models . 14
2.2.5 Alternative Linguistic Models . 14

2.3 Other Models of Translational Equivalence . 15

3 Mathematical Modeling 15
3.1 Generative Models . 16

3.1.1 Translation Models . 17
3.1.2 Language Models . 19

3.2 Discriminative Models . 19

4 Parameter Estimation 21
4.1 Parameter Estimation in Generative Models . 21

4.1.1 Learning Word Translation Probabilities . 22
4.1.2 Learning Phrase Translation Probabilities . 23
4.1.3 Learning Parameters of Generative SCFG Models 23

4.2 Interlude: Word Alignment . 23
4.2.1 Formal Definition . 25
4.2.2 Asymmetric Models . 25
4.2.3 Symmetric Alignment Models . 26
4.2.4 Supervised Learning for Alignment . 27
4.2.5 Evaluation of Word Alignment . 27

4.3 Estimation in Log-Linear Models . 28
4.3.1 Minimum Error-Rate Training . 28
4.3.2 Purely Discriminative Training . 31

5 Decoding 32
5.1 FST Decoding . 32

5.1.1 Optimality and Pruning . 34
5.1.2 Greedy Decoding . 35

5.2 SCFG Decoding . 35
5.3 Reranking . 36

6 Evaluation 37

7 Current Directions and Future Research 39

i

Acknowledgements 40

Bibliography 40

ii

1 Introduction

Machine translation (MT) is the automatic translation from one natural language into another using
computers. It is a key application in the field of natural language processing (NLP), and interest in MT
is nearly as old as the electronic computer – popular accounts trace its origins to a letter written by
Warren Weaver in 1947, only a year after ENIAC came online. A good historical overview is given by
Hutchins (2007), and comprehensive general survey is given by Dorr et al. (1999).

Statistical machine translation (SMT) refers to a subset of MT systems that are characterized by
their use of machine learning methods. Although the first systems were developed less than two decades
ago, SMT currently dominates the research field. Progress is rapid and the state-of-the-art is a moving
target. However, as the field has matured, some common themes have emerged.

The goals of this paper are to outline the essential elements of SMT and provide a taxonomy of
popular approaches. Our objective is to provide the reader with a basic understanding of how SMT
works and some of the common choices that are made, without focusing on the minute details of any
specific system. The reader should be familiar with topics from a senior undergraduate or first-year
graduate computer science curriculum, such as discrete mathematics, formal language theory, logic,
graph theory, search, and data structures. Some knowledge of statistics and machine learning will also
be helpful, although we focus on the main ideas and intuitions rather than full mathematical rigor, which
is in any case beyond the scope of this work. We will also briefly touch on some linguistic concepts,
although we will write mainly from a computer science perspective.

Good SMT tutorials appear in Knight (1997), Knight (1999b), and Manning and Schütze (1999,
chap. 13), but they are now somewhat dated. Knight and Marcu (2005) give a recent but brief survey. At
the time of this writing, other introductory materials in preparation include Koehn (2007), and a chapter
in a planned future edition of Jurafsky and Martin (2000). For greater coverage of fundamental research
areas, refer to textbooks on NLP (Jurafsky and Martin, 2000; Manning and Schütze, 1999), artificial
intelligence (Russell and Norvig, 2003) machine learning (Mitchell, 1997), or formal language theory
(Hopcroft and Ullman, 1979).

1.1 Background and Context

SMT treats translation as a machine learning problem. This means that we apply a learning algorithm
to a large body of previously translated text, known variously as a parallel corpus, parallel text, bitext,
or multitext. The learner is then able translate previously unseen sentences. With an SMT toolkit and
enough enough parallel text, we can build an MT system for an new language pair within a very short
period of time – perhaps as little as a day (Al-Onaizan et al., 1999; Oard and Och, 2003; Oard et al.,
2003). For example, Oard and Och (2003) report constructing a Cebuano-to-English SMT system in a
matter of weeks. Recent exercises have shown that translation systems can be built for a wide variety
of language pairs within similar time frames (Koehn and Monz, 2005, 2006). The accuracy of these
systems depends crucially on the quantity, quality, and domain of the data, but there are many tasks for
which even poor translation is useful (Church and Hovy, 1993).

Recent interest in SMT can be attributed to the convergence of several factors.
(1) The growth of the internet has strongly affected two constituencies of translation consumers.

The first of these is interested in the dissemination of information in multiple languages. Examples
are multilingual governments and news agencies and companies operating in the global marketplace.
The internet enables them to easily publish information in multiple languages. Due to this widespread
dissemination, SMT researchers now have access to Biblical texts (Resnik et al., 1997), bilingual gov-
ernment and news text (Koehn, 2005), and other data mined from the Internet (Resnik and Smith, 2003).
These data are the fundamental resource in SMT research. Because they are the product of day-to-day

1

human activities, they are constantly growing. Multilingual governments interested in dissemination,
such as the European Union, have increased MT research funding to further their domestic policy inter-
ests.

(2) The other consumers of translation are those interested in the assimilation of information not in
their native language. These include intelligence agencies, researchers, and casual internet users. The
internet has made such information much more readily accessible, and increasing demand from these
users helps drive popular interest in MT. The United States government is interested in assimilation, and
has increased MT research funding to further its international policy interests.

(3) Fast, cheap computing hardware has enabled applications that depend on large datasets and
billions of statistics. Advances in processor speed, random access memory size and speed, secondary
storage, and parallel processing have all helped to enable SMT.

(4) The development of automatic translation metrics – although controversial – has enabled rapid
iterative development of MT systems and fostered competition between research groups. Objective mea-
surable goals have naturally led to objective measurable progress. The National Institute of Standards
has used these metrics since 2002 in a yearly competition at its MT Evaluation conference.

(5) Several projects have focused on the development of freely available SMT toolkits (Al-Onaizan
et al., 1999; Burbank et al., 2005; Germann et al., 2001; Koehn, 2004a; Koehn et al., 2006; Och and
Ney, 2003; Olteanu et al., 2006). Most are open-source. These implementations help lower the barrier
for entry into SMT research.

1.2 Formal Description

Formally, our task is to take a sequence of tokens in the source language with vocabulary F , and trans-
form it into a sequence of tokens in the target language with vocabulary E . 1 Without loss of generality,
we will assume that tokens are words and sequences are sentences. Agglutinative languages such as
German and Inuktitut, or languages with no clearly marked word boundaries, such as Chinese, may
require special preprocessing. The most important consideration is all data are preprocessed consis-
tently, since statistical systems are sensitive to discrepancies. There is often no special treatment of
morphological variants – for instance, the English words translate and translation are treated as unre-
lated, indivisible tokens. Therefore, it is possible for the size of the vocabularies E and F to reach into
the tens or hundreds of thousands, or even millions in the case of morphologically complex languages
such as Arabic.

We denote a sequence of J source words as f1 f2... f J or f J
1 ∈ F J , and a sequence of I target words

as e1e2...eI or eI
1 ∈ E I . The goal of a translation system, when presented with an input sequence f J

1 , is
to find a sequence eI

1 that is translationally equivalent.
An example of translationally equivalent sequences is shown in Figure 1. It is natural to imagine

that translational equivalence can be decomposed into a number of smaller equivalence problems. For
instance, we can see that Chinese word � is translated as the English word north. We say that such
words are aligned. An example word alignment is shown in Figure 2.

Word translation is often ambiguous. For instance, we might reasonably translate � as northern
without loss of meaning. Often, the correct word translation will depend on context.

Word alignment itself is an imprecise concept, and in fact human judges will often disagree on the
alignment of a sentence (Melamed, 1998; Och and Ney, 2000a). If our system translates word by word,
it needs some mechanism to choose between several possible options for each decision.

In addition to word translation, the other main problem that can be seen from the figure is that words
with equivalent meanings do not appear in the same order in both sentences. Therefore, our system will

1We follow the widely used notation of Brown et al. (1990), who use E for English and F for French (or foreign).

2

虽然 北 风 呼啸

,
但 天空 依然 十分 清澈 。

Although north wind howls but sky extremely limpidstill

However , the sky remained clear under the strong north wind .

,

.

Figure 1: An example of translationally equivalent sentences. We show English glosses for each Chinese
word.

need some mechanism to reorder the words into an appropriate order for the target language. As with
word translation, reordering decisions often entail resolving some kind of ambiguity.

Translation can therefore be thought of as making a set of decisions. We rewrite the source sentence,
making word translation and reordering decisions, until we have replaced it completely with a target
sentence. At each decision point, a large number of possible rules may apply. We will need some
mechanism to disambiguate these rules. Furthermore, both rules and methods of disambiguation must
be learned from our parallel data.

Following these core ideas, there are four problems that we must solve in order to build a functioning
SMT system. 2

(1) Define the translational equivalence model that relates sequences in F∗ to sequences in E∗. All
of the translational equivalence models that we will consider in this paper are generalizations of formal
languages that produce two outputs rather than one. We describe translational equivalence models in
§2.

(2) Define a mathematical model, which is a function that assigns a score to every pair in the set
{E∗

× F∗
}. We describe mathematical models in §3.

(3) Search for reasonable values for our mathematical model with the aid of a parallel corpus. This
is called parameter estimation, and it is based on machine learning methods. The search space is defined
by our mathematical model. We describe parameter estimation in §4.

(4) Finally, when we are presented with input f J
1 , search for the eI

1 that conforms to our model of
translational equivalence and is assigned a high score under our mathematical model. This step is called
decoding. Just as the search space in parameter estimation is defined by our mathematical model, the
search space in decoding is defined by our translational equivalence model. We describe decoding in
§5.

In addition to these four problems, we will discuss the important topic of evaluation in §6. The
article concludes with notes on current directions in §7.

2 Translational Equivalence Modeling

We can classify SMT systems according to the model of translational equivalence describing the con-
version of f J

1 into eI
1 . Broadly speaking, a translational equivalence model is simply the set of all

2Most descriptions of the SMT problem will refer to only three subproblems, following Brown et al. (1990). This is
because early systems involved a tight coupling between the translational equivalence model and the mathematical model
(§3.1). Recent advances that we describe in this paper have shown that the choices of translational equivalence model and
mathematical model are largely orthogonal. What we call here a mathematical model might be more accurately called a
parameterization. However, since in the literature the overloaded term model is often used interchangeably to refer to both the
models of translational equivalence and their parameterizations, we use mathematical model to acknowledge this usage, while
at the same time distinguishing it from translational equivalence.

3

虽然 北 风 呼啸

,
但 天空 依然 十分 清澈 。

Although north wind howls but sky extremely limpidstill

However , the sky remained clear under the strong north wind .

,

.

Figure 2: A possible alignment of the the sentence illustrated in Figure 1.

(unweighted) rules employed by an MT system to transform a source sentence into a target sentence.
Although in principle these rules may come from anywhere, in most SMT systems they are automati-
cally extracted from the training corpus. The extraction process is described in more detail in §4.2. In
this section, we describe the various types of rules that are typically used.

Most popular translational equivalence models can be described by one of two formalisms: finite-
state transducers (FST) or synchronous context-free grammar (SCFG). 3 These formalisms are gener-
alizations of finite-state automata (FSA) and context-free grammar (CFG), respectively. Rather than
producing single output strings as in those formalisms, they produce two output strings, and define an
alignment between them. Translational equivalence models are important in decoding, where they
constrain the search space in which we will attempt to find translations.

The remainder of this section discusses translational equivalence models. FST models are described
in §2.1, and SCFG models are described in §2.2. We briefly touch on some other types of translational
equivalence model in §2.3.

2.1 Finite-State Transducer Models

Finite-state transducers are straightforward extensions of the familiar finite-state automata (FSA) (Hopcroft
and Ullman, 1979). Recall that we can define a finite-state automaton (S, L , D) as a set of states S, a
set of labels L , and a set of transitions D ⊆ {S × S × L}, where each transition is defined as a pair of
states and a label that must be output (or read, depending on the use of the FSA) as we move from the
first state to the second. In NLP, there are a number of applications of FSAs and FSTs. A common use
of FSAs comes from automatic speech recognition (ASR), where they are the basis of so-called n-gram
language models (see e.g. Jelinek, 1998). We can define an n-gram language model for a language with
vocabulary V as (V n−1, V, D = {s × s′

× v : v ∈ V, s ∈ V n−1, s′
= sn−1

2 v}) In this FSA, each transition
represents a word in the language, and each state represents the n − 1 most recently encountered words.
By applying probabilistic weights to this FSA, we can use it to compute the probability of any string in
a language. Although FSA language models bear little resemblance to our understanding of how natural
language works, their use in probabilistic modeling is widespread, often with good results.

Finite-state transducers extend the concept of FSAs by using two sets of labels; each transition will
have a label from each set. We can imagine that the transducer operates on an input string and an output
string. One label is read from the input, and the other is written to the output. A transition labelled

3This distinction may be a bit confusing, since finite state transducers come from automata theory and synchronous context-
free grammars from formal language theory. Although concepts from each theory have dual representations in the other, it is
a historical accident that in the first case, the automata theory concept is generally used, and in the second case, the language
theory concept is generally used. We simply follow the prevailing terminology in the literature (although this is changing, with
recent popular interest in tree transducers, e.g. in Galley et al., 2006; Marcu et al., 2006).

4

虽然 北 风 呼啸
,
但 天空 依然 十分 清澈 。

Although north wind howls but sky extremely limpidstill

However , the sky remained clear under the strong north wind

2 0 1 1 1 0 0 1 1 1

虽然 北 风呼啸但 天空 依然十分 清澈

1

.

1

。

,

,

.

(1)

(2)

(3)

ε

1

Figure 3: Visualization of IBM Model 4. This model of translation takes three steps. (1) Each English
word (and the null word) selects a fertility – the number of Chinese words to which it corresponds. (2)
Each English word produces a number of Chinese words corresponding to its fertility. Each Chinese
word is generated independently. (3) The Chinese words are reordered.

with x from set X and y from set Y signifies a correspondence between x and y. Additionally, either
or both label may consist of the empty string ε, which indicates that there is no change in that output
for that particular transition. A powerful technique that we can use with FSTs is composition. FSTs are
composed by making the output of one the input to the next.

2.1.1 Word-Based Models

SMT continues to be influenced by the groundbreaking IBM approach (Berger et al., 1994; Brown et al.,
1990, 1993). The IBM Models are word-based models and represent the first generation of SMT models.
Since they illustrate many concepts common to other SMT models they make a useful starting point for
our exposition. We illustrate word-based models with the most commonly used example, IBM Model 4.

For historical reasons that we will explain in §3.1, IBM Model 4 is usually described as a target-to-
source model, that is, a model that produces the source sentence f J

1 from the target sentence eI
1 . We

follow this convention in our description.
In IBM Model 4, the process that produces f J

1 from eI
1 takes three steps, which are illustrated in

Figure 3. Each of these steps corresponds to a single transducer in a cascade. The transducers are
illustrated in Figure 4.

(1) Each target word chooses the number of source words that it will generate. We call this number
φi the fertility of ei . One way of thinking about fertility is that when the transducer encounters the word
ei in the input, it outputs φi copies of ei in the output. The length J of the source sentence is determined
at this step since J =

∑I
i=0 φi . This allows us to define a translational equivalence between source and

target sequences of different lengths.
(2) In the second transducer, each input word ei ∈ E produces an output word f j ∈ F . This

represents the translation of individual words.
(3) The translated words are reordered.
The final step exposes the key weakness of finite-state transducers for translation. There is no effi-

cient way to represent reordering in a finite-state transducer. They are designed to represent relationships
between strings with a monotonic ordering relationship – in other words, if an input label at position

5

However : ε ε : However ε : However ε : However

ε : εε : ε
ε : ε

ε : ε

However : 虽然

However : 但

sky : 天空

remained : 依然

(1)

(2)

(3)

十分	
 虽然	
 但	
 ,	
 	
 天空	
 依然	

清澈	
 	
 呼啸 北	
 风 ! : ε

ε :十分	

	
 ε :虽然

ε :但

	
 ε :虽然

ε :但

ε :十分	

ε :但

	
 ε :虽然

ε :十分	

Figure 4: Visualization of the finite-state transducer conception of IBM Model 4. We show only a por-
tion of each transducer. Transducer (1) copies the input word to its output a number of times according
to its fertility; (2) corresponds to word-to-word translation, and (3) corresponds to reordering. Trans-
ducer (3) is the most complex, because it must represent all possible reorderings. A cascade of these
transducers can represent the process shown in Figure 3.

i corresponds to an output label at position j , then an input label at position i ′ > i will correspond to
an output label at position j ′ > j . This is ideal for problems such as automatic speech recognition and
part-of-speech tagging, where monotonicity is the natural relationship between streams of data. One
solution to this problem is to require monotonic alignments (Tillmann et al., 1997). Monotonicity is
beneficial for the complexity of decoding and for integration with ASR for speech-to-speech or speech-
to-text translation. However, it will rule out many good translations such as the one in Figure 1, and
the results may be awkward, especially in the translation of languages that have naturally different word
orders. At the other end of the spectrum, full reordering requires an FST that accepts all possible per-
mutations of the J source words. This FST contains O(J !) states (Och and Ney, 2003). Most models
take a middle ground, using a generally monotonic approach but allowing a fixed number of words to
be skipped. This approach originated with the IBM models, which allowed a lookahead of up to four
words. This is often called the IBM constraint.

In addition to applying this process to each target word ei in the sequence eI
1 , it is also applied to

a special empty token ε, called the null word – or more simply null – and denoted e0. The purpose of
modeling null translation is to account for words in f J

1 which are often dropped in translation, as is
often the case with function words.

6

,Although north wind howls but sky extremely limpidstill

However , the sky remained clear under the strong north wind

.

However , the sky remained clear under the strong north wind .

.

虽然 北 风 呼啸

但,

天空 依然 十分 清澈 。

虽然 北 风 呼啸 。

但,

天空 依然 十分 清澈

(1)

(2)

(3)

Figure 5: Visualization of the phrase-based model of translation. The model involves three steps. (1)
The English sentence is segmented into “phrases” – arbitrary contiguous sequences of words. (2) Each
phrase is translated. (3) The translated phrases are reordered. As in Figure 3, each arrow corresponds to
a single decision.

Note that for IBM Model 4, the alignment is asymmetric. In particular, each source word can align
to exactly one target word, or the null word. A target word can link to an arbitrary number of source
words, as defined by its fertility.

2.1.2 Phrase-Based Models

One problem with word-based models is that the concept of a word must be precisely defined in or-
der to correctly tokenize the sentence. Although this is adequate for languages such as English, it is
somewhat more problematic for morphologically complex languages such as German, or languages
with ambiguous word boundaries, such as Chinese. When translating such languages with word-based
models, tokenization becomes a critical issue.

A second problem is that the concepts of null translation and fertility require substantial special
modeling and engineering and are difficult to estimate accurately. They are also unappealing on an
aesthetic level.

Finally, in real translation, monotonic reordering is common (though not absolute) and contiguous
sequences of words often translate as a unit. However, in word-based translation models, substitution
and reordering decisions are all made independently for each individual word. This results in a greater
chance for error, usually resulting in “word salad” – a translation in which many words are correct, but
their order is thoroughly wrong.

These observations motivate phrase-based translation (Koehn et al., 2003; Marcu and Wong, 2002;
Och and Ney, 2004; Och et al., 1999). In phrase-based models we discard the assumption that the
unit of translation is a single word. Instead, a unit of translation may be any contiguous sequence of
words, called a phrase. In this usage, the term “phrase” has no particular linguistic sense, although it
is straightforward to restrict ourselves to phrases licensed by a syntactic parser (Koehn et al., 2003).
Phrase-based models do away with the concepts of null translation and fertility; each phrase in eI

1 is

7

(1)

(2)

(3)

虽然	
 ! _ 但	
 天空_依然_十分_清澈
 北_风_呼啸 ! : ε

ε :	
 ! _ 但

	
 ε :虽然

ε :	
 天空_依然_十分_清澈

However : However the sky remained clear : the_sky_remained_clear

under the strong north wind : under_the_strong_north_wind
, : ,

However : 虽然 the_sky_remained_clear : 天空_依然_十分_清澈

under_the_strong_north_wind : 北_风_呼啸, : ! _ 但

ε :	
 北_风_呼啸

ε :	
 !

Figure 6: Visualization of the finite-state transducer conception of phrase-based translation. We show
only a portion of each transducer. Transducer (1) segments the target sentence into phrases; (2) performs
word-to-word translation; (3) reorders the phrases in the same way that the reordering transducer of
Figure 4 reorders words.

nonempty and translates to exactly one nonempty phrase in f J
1 . We can also defer the tokenization step

in languages such as Chinese, allowing the phrase boundaries to define tokens (Wu, 1995a; Xu et al.,
2004). As a consequence we can characterize the substitution of “north wind” with “�Î” as an atomic
operation. In the case where we have only seen the words “north” and “wind” separately, we can still
translate in the same manner as a word-based model – that is, we translate with phrases that consist only
of single tokens.

In phrase-based models, the process of transforming eI
1 to f J

1 takes the following steps, illustrated
in Figure 5.

(1) The sentence eI
1 is first split into K phrases ẽK

1 . Each phrase ẽk = ei2
i1

∈ E i2−i1+1.
(2) Each phrase ẽk is replaced with a phrase f̃k = f k2

k1
∈ Fk2−k1+1. Because of the one-to-one

restriction, this means that we will end up with exactly K phrases. The length J of f J
1 is then J =∑K

k=1 k1 − k2.
(3) The translated phrases are permuted into their final order. The permutation problem is iden-

tical to the one that we encounter in word-based models, and as in that case, one possible solution is
monotonicity (Banchs et al., 2005).

8

A cascade of transducers which does this is shown in Figure 6.
We might assume that the words within any particular phrase pair are internally aligned in some way,

but that is not strictly necessary in the most general form of phrase-based models (Marcu and Wong,
2002). Explicit internal word alignments are assumed in some phrase-based models, although this is
usually for the purposes of mathematical modeling (e.g. Koehn et al., 2003; Kumar et al., 2006).

A variant of phrase-based models is the alignment template model (Och and Ney, 2004; Och et al.,
1999). In this model explicit phrase-to-phrase translations are not used. Instead, each phrase is first
associated with an alignment template, which is a reordering of the words in the phrase based on word
categories rather than specific word identities. The words in the phrase are then translated using word-
to-word translation, and the alignment templates are reordered as in phrase-based models.

Simard et al. (2005) present a version of phrase-based translation in which phrases are not required
to be continuous, and gaps must be filled in with other phrases.

2.2 Synchronous Context-Free Grammar Models

Phrase-based FST models are widely used. Nonetheless, these models present a number of drawbacks
for MT. Arbitrary permutation is an especially crude representation of the type of reordering that hap-
pens in real translation. There is no hope of describing the movement of hierarchical structures within
sentences using such a model. These behaviors are more likely to be characterized by linguistic notions
of syntax. Syntactic cues may provide several hints to a translation model.

(1) Knowledge of a word’s syntactic collocates could be used to influence the translation choice of
the word (Garcı́a Varea et al., 2001).

(2) Non-overlapping syntactic units rarely overlap in translation. We call this property phrasal
cohesion (Fox, 2002).

(3) Target language syntax can hopefully guide reordering more accurately than arbitary permuta-
tion. Just as word-based models produce word salad, phrase-based models often produce phrase salad

Recent empirical studies have confirmed that these conditions hold in the majority of cases, although
there are plenty of exceptions. Fox (2002) presents empirical evidence that reordering tends to respect
the boundaries of syntactic phrases, and Galley et al. (2004, 2006) expand on this to illustrate that
deviations can be explained with the benefit of some sensitivity to additional syntactic context. Other
empirical studies have also supported the hypothesis that substantial syntactic information is preserved
in translation (Hwa et al., 2005; Yarowsky et al., 2001).

There have been a few attempts to apply syntactic knowledge to FST-based models. These include
limiting phrase-based translation to phrases licensed by a syntactic parser (Koehn et al., 2003), reranking
FST decoder output using probabilities from a syntactic parser (Och et al., 2004); and preprocessing
input by performing language-specific reordering of phrases found by a syntactic parser (Collins et al.,
2005). Only the last of these resulted in modest improvements.

An alternative to the FST is the synchronous context-free grammar (SCFG), which is a generaliza-
tion of context-free grammar (CFG). SCFGs can be applied in concert with syntactic parsing of one or
both languages in translation, although this is not strictly necessary.

SCFGs are known under different guises as syntax-directed translation (Aho and Ullman, 1969),
inversion transduction grammar (Wu, 1995a), or head transducers (Alshawi et al., 2000). A formalism
that generalizes these is multitext grammar (Melamed, 2003). Chiang (2006) provides a good overview
of SCFG and several variants.

A related formalism is the tree transducer, which describes operations on tree fragments. In many
cases, regular tree transducers are equivalent SCFG models. The use of tree transducers to describe
these translation models is increasingly popular (e.g. Galley et al., 2006; Graehl and Knight, 2004;

9

Marcu et al., 2006; Wellington et al., 2006a), although grammar-based descriptions are more common
in earlier descriptions.

In the discussion that follows, we will use the notation of SCFG, which is relatively easy to un-
derstand. Although the general literature on SCFG does not draw any formal distinction between the
models we describe here, in SMT a finer-grained classification is used (Chiang, 2004).

SCFG is a generalization of CFG to the case of two output strings. Recall that a CFG (N , T, D)

consists of a set of non-terminal symbols N , terminal symbols T , and productions D = {N −→ {N ∗
×

T ∗
}}. We begin by writing a special root non-terminal symbol to the output, This symbol is rewritten

using a rule d ∈ D. Rewriting of non-terminal symbols continues recursively until the output contains
only terminal symbols. In natural language parsing, terminal symbols are words (i.e. T = E) and
non-terminal symbols represent syntactic categories, as in the following fragment of a CFG grammar:

NP −→ DT NPB (C1)

NPB −→ JJ NPB (C2)

NPB −→ NP (C3)

DT −→ the (C4)

JJ −→ strong (C5)

JJ −→ north (C6)

NN −→ wind (C7)

This grammar is similar to ones that are currently used in natural language parsing. 4 In this gram-
mar, the syntactic category NP can be rewritten as “the strong north wind” via a series of productions,
as shown in Figure 7.

In SCFG, we must specify two output strings for each production. We show a fragment of an SCFG
grammar:

NP −→ DT 1 NPB 2 / DT 1 NPB 2 (S1)

NPB −→ JJ 1 NPB 2 / JJ 1 NPB 2 (S2)

NPB −→ JJ 1 NPB 2 / NPB 2 JJ 1 (S3)

NPB −→ NP 1 / NP 1 (S4)

DT −→ the / ε (S5)

JJ −→ strong / |x (S6)

JJ −→ north / � (S7)

NN −→ wind / Î (S8)

Here, we separate the two outputs using a slash (/). Alignment is indicated by coindexes on the
nonterminals, which are required to appear in both outputs. We can think of SCFG as generating iso-
morphic trees, in which the non-terminal nodes of each tree are aligned. One tree can be transformed
into another by rotating its non-terminal nodes, as if it were an Alexander Calder mobile. The relation-
ship is illustrated in Figure 7. Note that if we ignore the source string dimension, the rules in this SCFG

4The nonterminal categories are borrowed from those used in an annotation of the Wall Street Journal corpus, and represent
familiar English syntactic categories such as noun phrase (NP), adjective (JJ), preposition (IN), determiner (DT), and noun
(NN) (Marcus et al., 1993).

10

the strong north wind

DT

JJ

JJ NN

NPB

NP(1) (2)

NPB

the strong north wind

DT

JJ

JJ NN

NPB

NP

NPB

ε 呼啸北 风

DT

JJ

JJ NN

NPB

NP

NPB

north wind howls

Figure 7: Visualization of the CFG derivation and SCFG derivations. Derivation happens in exactly the
same way in CFG (1) and SCFG (2). Each nonterminal symbol is replaced by the contents of the right-
hand-side of a rule whose left-hand-side matches the symbol. In our illustration, each arrow represents
a single production. The difference in SCFG is that we specify two outputs rather than one. Each of the
non-terminal nodes in one output is linked to exactly one node in the other; the only difference between
the outputs is the order in which these nodes appear. Therefore, the trees are isomorphic. Although
terminal nodes are not linked, we can infer a word alignment between words that are generated by the
same non-terminal node. In this illustration, the only reordering production is highlighted. Note that if
we ignore the Chinese dimension of the output, the SCFG derivation in the English dimension is exactly
the same as in (1).

correspond to the rules that appears in our CFG example. Alternatively, if we ignore the tree structures,
we obtain an alignment on the words of the source and target language strings. Thus SCFG defines a
mapping between both strings and trees, and has a number of uses depending on the relationship that
we are interested in (Melamed, 2004a; Wu, 1995a).

Normal forms and complexity analysis for various flavors of SCFG are presented in Aho and Ullman
(1969) and Melamed (2003). Generally speaking, the number of possible reorderings is quite large.
Church and Patil (1982) shows that the number of parses in a binary CFG is related to a combinatorial
function, the Catalan number, and Zens and Ney (2003) shows that the number of reorderings in a
binary SCFG are related to another combinatorial function, Shröder number. Despite this, it is possible
to process SCFG in polynomial time using standard chart parsing algorithms (Melamed, 2003). In
principle, this makes SCFG models of translational equivalence less computationally expensive than
FST models (Wu, 1996).

Numerous different approaches to SMT can be expressed in the SCFG formalism. In the follow-
ing sections we will illustrate three applications of SCFG that are representative of their use in SMT.
We will consider bracketing grammars used to constrain reordering (§2.2.1); syntax-based grammars
that exploit linguistic syntax (§2.2.2); hierarchical phrase-based translation that combines the insights
of phrase-based models with syntactic structure, (§2.2.3); and syntactic phrase-based translation that
combines phrases with linguistic syntax (§2.2.4).

2.2.1 Bracketing Grammars

One reason to use SCFG is to curtail the number of reorderings described by the model. This is important
during decoding – even if we knew the correct translation for each individual word in the sentence, we

11

the strong north wind

X

X

X X

X

X

X

ε 呼啸北 风

X

X

X X

X

X

X

north wind howls

Figure 8: Visualization of a bracketing grammar derivation. Each arrow corresponds to a grammar
production. Rules that involve reordering are highlighted, and the order of the target language sentence
is illustrated beneath the syntax tree.

will still need to search for a good reordering. In FST models, reordering is modeled as arbitrary
permutation unless constraints are used. Search exponential in sentence length. However, as described
above, the search in SCFG is polynomial in sentence length. This observation motivates the use of
bracketing grammars, which are designed to compactly represent all possible reorderings consistent
with a binary bracketing of the input string (Wu, 1996). In bracketing grammars, we use a single
undifferentiated nonterminal symbol, and three rules:

X −→ X 1 X 2 / X 1 X 2 (B1)

X −→ X 1 X 2 / X 2 X 1 (B2)

X −→ e / f (B3)

In Rule B1 we define symbols e ∈ E ∪ ε and f ∈ F ∪ ε. This is really a template rule; instances of it
capture word-to-word alignments.

A potential drawback of using bracketing grammar as our model of translational equivalence is that
we may encounter a sentence pair for which the model cannot express the reordering relationship. A
canonical example of this is the so-called inside-outside alignment, which is illustrated in Figure 9. Wu
(1995b) argued that such reorderings do not occur in real data. However, Wellington et al. (2006b)
recently examples in real data. Zens and Ney (2003) show empirically that bracketing grammars can
represent most reorderings found in real data, and specifically, that they can represent more reorderings
than a finite state model using typical constraints. In general, any alignment can be expressed in a gram-
mar with a sufficient number of nonterminal (Aho and Ullman, 1969). The tradeoff for this is increased
complexity – in particular, complexity is exponential in the number of coindexed nonterminals.

A lexicalized bracketing grammar, in which nonterminal symbols are annotated with words, is de-
scribed in Zhang and Gildea (2005). A related formalism is the head-transduction grammar (Alshawi
et al., 2000).

12

A B C D

ab cd

A B C D

a bc d

Figure 9: Visualization of the so-called inside-outside alignments that are not possible using bracketing
transduction grammar. Due to the interleaving words in these configurations, we cannot construct a
binary-branching SCFG that is isomorphic for these strings, although a SCFG with four nonterminals
can produce them (Aho and Ullman, 1969). These are the smallest impossible configurations in this
grammar; as the number of words in each string increases, so does the number of impossible configura-
tions.

2.2.2 Syntax-Based Grammars

One possible advantage of using SCFG is that it allows us to easily incorporate knowledge based on
natural language syntax. This follows from developments in syntactic modeling for ASR (Chelba and
Jelinek, 1998).

Often, we will have meaningful linguistic grammars only for one language. 5 The monolingual
syntax will look much like our example fragment CFG (Rules C1-C8). In order to use this monolingual
syntax in an SMT model, we construct an SCFG where productions mirror the known syntax; in the
other language, we allow arbitrary reorderings of these symbols (Wu and Wong, 1998; Yamada and
Knight, 2001). The objective of such a SCFG is to require that reordering observe the phrasal cohesion
constraint imposed by linguistic syntax. This is called a syntax-based grammar. The example derivation
from Figure 7 is an illustration of this.

2.2.3 Hierarchical Phrase-Based Translation

The SCFGs that we have so far described differ radically from FST models in their characterization of
reordering between strings. However, they share a key weakness of word-based FST-models: they only
allow word-to-word translation, which requires a reordering decision for each word. Each decision leads
to more possibility for error. Ideally, we would like to benefit from the insights behind both hierarchical
models and phrase-based models. This is accomplished in hierarchical phrase-based translation (Chiang,
2005, 2007; Chiang et al., 2005).

In this grammar, no linguistic syntax is required. A single undifferentiated non-terminal X is used
in the main productions, and only two such nonterminals may appear on the right-hand side of any
production, just as in a bracketing grammar. However, unlike a bracketing grammar, the right-hand
side may also contain a number of terminal symbols in both languages. This corresponds to the basic
insight of phrase-based translation, in that each rule presents a mapping between strings of words.
Essentially, the rules represent phrases that may be reordered recursively. This is illustrated in the
following grammar fragment.

5Usually this is the target language (Wu and Wong, 1998; Yamada and Knight, 2002). This imbalance reflects the fact that
many of the translation systems reported in the literature are designed to translate into well-studied languages, such as English,
for which we already have high-quality syntactic parsers.

13

the sky remained clear

However ,

under the strong north wind

XX .

X

虽然 X X 。,	
 但

北	
 风	
 呼啸

天空	
 依然	
 十分	
 清澈

X

Although
north wind howls

sky still extremely limpid
but , .

Figure 10: Visualization of hierarchical phrase-based translation. Each arrow corresponds to a grammar
production. Rules that involve reordering are highlighted. Glosses of the Chinese sentence fragments
are shown beneath the Chinese derivation.

X −→However , X 1 X 2 . /}6 X 2 , F X 1 � (H1)

X −→under the strong north wind /�Î|x (H2)

X −→the sky remained clear /)z�6A��� (H3)

In this grammar, recursivity is captured in Rule H1. Note that, as with FST phrase-based models,
explicit word alignments are not specified in this model, although it implies that there may be some
internal alignment between words appearing in the same grammar rule. A derivation is illustrated in
Figure 10.

2.2.4 Syntactic Phrase-Based Models

Recently, several models have been proposed that combine the advantages of hierarchical reordering,
syntax, and phrases (Galley et al., 2006; Marcu et al., 2006; Quirk et al., 2005). These models are
similar to hierarchical phrase-based models. However, in addition to using the syntactic structure of
SCFG, they employ lingustic syntax as in syntax-based models (§2.2.2). Although there are differences
between various models, they all involve multi-word translation rules, as in phrase-based translation
models. These are decorated with fragments of linguistic syntax, which are used to constrain the possible
reorderings of the phrases.

2.2.5 Alternative Linguistic Models

A wide variety of linguistic theories are computationally equivalent to CFG, and these can be used as the
basis for translation using SCFG. Head transducers may be seen as a form of synchronous dependency
grammar Alshawi et al. (2000). In dependency grammar, the nodes of the rooted tree which describes
the sentence structure are also the words of the sentence. It is possible to derive transformations that
will convert many dependency grammars to context-free grammars, and vice versa (e.g. Collins et al.,
1999). Therefore, we can construct SCFGs that correspond to dependency grammar (Melamed, 2003).
Translation models based on dependency grammar are described in Gildea (2004) and Quirk et al.
(2005).

14

2.3 Other Models of Translational Equivalence

Moving up the hierarchy of formal languages, there are synchronous models based on language for-
malisms more powerful than context-free languages. A good example is tree-adjoining grammar (Joshi
and Schabes, 1997), which we can generalize to synchronous tree-adjoining grammar (STAG) (Shieber
and Schabes, 1990). Formally, TAG is a member of a large class of formalisms known as linear context-
free rewriting systems (LCFRS) (Joshi et al., 1991; Vijay-Shanker et al., 1987). These formalisms can
parse a restricted subset of context-sensitive languages in polynomial time. Much of the work in this
area is currently theoretical. However, Generalized Multitext Grammar (Melamed et al., 2004), and
LCFRS, is used as the basis for an SMT system (Burbank et al., 2005).

3 Mathematical Modeling

Translational equivalence models allow us to enumerate possible structural relationships between pairs
of strings. However, even with the constraints of a strict translational equivalence model, the ambiguity
of natural language results in a very large number of possible target strings for any input source string.
Obviously, our translation system will need some mechanism to choose the correct target string.

This mechanism comes in the form of a mathematical model, which is a function that assigns a
real-valued score to any pair of source and target sequences. The general forms of these models are
familiar from other machine learning problems. There is a vast number of approaches; we will only
briefly describe the most common ones here. For more detail, the reader is referred to a general text on
machine learning, such as Mitchell (1997).

In typical machine learning problems, we are given an input y ∈ Y , and the goal is to find the best
output x ∈ X . Note that the values x and y may be complex. We introduce a function f : X × Y → R
that maps input and output pairs to a real-valued score that is used to rank possible outputs. This
model may be probabilistic, meaning that we constrain it in one of two ways. We introduce the random
variables x and y which range over the sets X and Y , respectively. Let x ∈ X and y ∈ Y be specific
values drawn from these sets. In a joint model, denoted P(x, y), we introduce the constraints

∑
(x,y)∈{X×Y }

P(x = x, y = y) = 1

∀(x,y)∈{X×Y } P(x = x, y = y) ∈ [0, 1]

The value P(x = x, y = y) is the joint probability of the assignments x = x and y = y occurring, out
of all possible combinations of assignments to these variables. We will often abbreviate this P(x, y).

In a conditional model, denoted P(x|y), we introduce the constraints

∀y∈Y

∑
x∈X

P(x = x |y = y) = 1

∀(x,y)∈{X×Y } P(x = x |y = y) ∈ [0, 1]

The conditional probability P(x = x |y = y) – abbreviated P(x |y) – is simply the probability of the
assignment x = x , given that the assignment y = y is fixed. In this case, we assume that knowledge of
the value assigned to x will help us determine the assignment to x.

These constraints represent the distribution of finite probability mass across all combinations of
assignments to x and y. In many machine learning problems, it is not unusual for the input set Y to be
complex. Often, the set X of possible outputs is a small, finite set of labels or classes and our goal is

15

simply to find the best classification of the input. This is not the case in SMT, where our input f ranges
over F∗ and our output e ranges over E∗. We will usually expand our definition of the output to include
the decisions made by our translational equivalence model defining the relationship between f = f J

1 and
e = eI

1 . Let’s denote this structure using the variable d = d M
1 ⊂ D. Recall that D is a set of transitions

in the case of FST models (§2.1) and a set of grammar productions in the case of SCFG models (§2.2)
– in other words, D is simply a set of rules. In the SMT problem, we are given an input f J

1 and we
are interested in finding a “class” (eI

1, d M
1) with complex internal structure, which comes from a set that

is exponential in the size of the input. This problem is known as structured classification or structured
prediction (Taskar, 2004). Note that the set d M

1 of derivations exactly defines eI
1 for a given input f J

1 ,
and we could simply denote the label using d M

1 ; we denote the label using (eI
1, d M

1) because this more
intuitive. For notational purposes we also define a predicate Y (eI

1, d M
1) that is true when the set d M

1
yields eI

1 , and false otherwise.
The mathematical function that we are truly interested in is P(e|f). This function ignores the struc-

ture given by our translational equivalence models. However, these models usually define multiple
structures that can relate the same pair (eI

1, f J
1). This gives us:

P(e|f) =

∑
d:Y (d,e)

P(e, d|f) (1)

Unfortunately, this sum is exponential in both FST (Brown et al., 1993) and SCFG models (Melamed,
2004a). Therefore we will use the simpler function P(e, d|f) for classification. We can view the clas-
sification problem as one in which the decoder produces candidate labels according to our translational
equivalence model, and the mathematical model is used to rank these candidates. Usually these tasks
are integrated, but not necessarily (see §5.3).

Although the function P(e, d|f) ranges over discrete sets, these sets are too large for us to directly
enumerate them. This poses both practical and theoretical problems: we cannot enumerate the function
to store its value on disk; and furthermore, we will not have enough training data to reliably learn what
these values should be. The goal of mathematical modeling, then, is to define the function in such a
way that we can enumerate its values, efficiently learn them, and store them on a disk or in memory. In
SMT, there are two broad classes of models that accomplish this: generative models, which we describe
in §3.1, and discriminative models, which we describe in §3.2.

3.1 Generative Models

One method of manipulating probabilistic models is through use of the chain rule:

P(x, y) = P(x|y)P(y) (2)

In generative models, we decompose P(x|y) using Bayes’ rule, which we derive using the chain rule
and a bit of algebra as shown in Equation 4.

P(x|y) =
P(x, y)

P(y)
=

P(y|x)P(x)

P(y)
(3)

Applying Bayes’ rule to our structured classification problem, we arrive at the following decomposition:

P(e, d|f) =
P(f, d|e)P(e)

P(f)
(4)

During the decoding step, we will be able to ignore the denominator P(f) in Equation 4 because it
is constant for any input f J

1 . Therefore, we don’t need to consider this model any further and we

16

can focus on P(f, d|e) and P(e). The decomposition is identical to the successful approach used in
automatic speech recognition (ASR) (Brown et al., 1990).

In SMT we call P(e) the language model and P(f, d|e) the translation model. Note that while
our objective is to discover eI

1 given f J
1 , we actually model the reverse. This originated with the IBM

system, and it is for this reason that IBM Model 4 is described as a translation from eI
1 to f J

1 (§2.1.1)
(Brown et al., 1993). The advantage of this over modeling P(e, d|f) directly is that we can apply two
independent models to the disambiguation of e (Brown et al., 1990). This is beneficial because our
estimates for each model are likely to contain errors; and by applying them together we hope that each
can counterbalance the errors of the other. 6

3.1.1 Translation Models

In translation modeling, our goal is to find a tractable representation of the function P(f J
1 , d M

1 |eI
1).

Generative models use probabilistic tools for this. One of these is chain rule, which allows us to write:

P(f J
1 , d M

1 |eI
1) =

J∏
j=1

P(f j | f j
1 , d M

1 , eI
1) ×

M∏
m=1

P(dm |dm
1 , eI

1) (5)

This equation tells us that the conditional probability of the pair (f J
1 , d M

1) with respect to eI
1 is simply

the product of many small probabilities, each of which corresponds to a single action taken by our
translational equivalence model. Thus, in our FST model, there is a probability for each transition in
each transducer; in our SCFG model, there is a probability for each production. In general, we can
say that there is a probability associated with every arrow in the figures in §2. Such models are called
weighted, giving us weighted FST (WFST) and weighted SCFG (WSCFG), respectively.

We can also see from Equation 5 why such models are called generative models. In a generative
model, we are given a probability for every event that occurs in our data – including our input data.
We can think of the model as a stochastic process that generated the data. In fact, we can think of the
language model P(e) as a stochastic model that generates target language sentences, and the translation
model P(f, d|e) as a second stochastic process that “corrupts” the target language to produce source
language sentences. Although first implemented in the IBM system, this idea was in fact anticipated
much earlier by Weaver:

One naturally wonders if the problem of translation could conceivably be treated as a prob-
lem in cryptography. When I look at an article in Russian, I say: “This is really written in
English, but it has been coded in some strange symbols. I will now proceed to decode.”
(Weaver, 1955)

Weaver makes analogy to information theoretic work on signal transmission over a physical medium,
called the noisy channel problem. It is illustrated in Figure 11. Following Weaver, the process to recover
eI

1 is called decoding.
Equation 5 helps to simplify our problem, but not completely. Even a simpler function such as

P(d1|eI
1) still has a domain that is too large for us to deal with. In order to simplify these functions,

we introduce the idea of conditional independence. When we say that a variable x is conditionally

6In fact, recent empirical work has shown that the values learned by common parameter estimation methods are much less
precise than common floating point representations – Och (2005) and Federico and Bertoldi (2006) show that they can be
stored in four bits without loss of accuracy. There are probably learning-theoretic reasons for this, but this issue is as of yet
unexplored in the SMT literature.

17

P(e) P(f|e)

noisy
channelsource

Figure 11: The source-channel model of sentence pair generation. The source model P(e) produces eI
1 ,

which is then transformed by the channel model P(f|e) to produce f J
1 . If we are given only f J

1 , we can
try to deduce an eI

1 using our knowledge of both models.

independent of y, we mean that P(x|y) = P(y). In other words, conditional independence means
that knowing the value of y does not affect the probability distribution of x. By making independence
assumptions about our data, we can drop enough terms from our functions that they become tractable.
The obvious danger, of course, is that if we make too many or wrong independence assumptions, our
resulting probability distributions will be incorrect. This is a constant danger in SMT modeling. In
general, nearly any independence assumption will be unrealistic; our hope is that they are approximately
close enough to that it will not harm our results. Making conditional independence assumptions is a
matter of art and pragmatism.

We will use the notation Pδ(x|y) to represent the distribution P(x|y) that has been rewritten to
include only elements of y on which x is conditionally dependent. Using this notation, we can rewrite
Equation 5 as:

P(f J
1 , d M

1 |eI
1) =

J∏
j=1

Pδ(f j | f j
1 , d M

1 , eI
1) ×

M∏
m=1

Pδ(dm |dm
1 , eI

1) (6)

Assuming that we have made sufficient independence assumptions, each term on the right side of this
equation ranges over a sufficiently small sets that we can actually learn them. At runtime, we will simply
look up the values associated with the terms and use them to compute the function. Each of these values
is a parameter; and the associated model is a parameterization of P(f J

1 , d M
1 |eI

1). In other words, a
parameter is an element of the smallest distribution that we represent in our models – a distribution
that we do not represent as a function of other distributions. We will use p(x, y) or p(x |y) to denote
parameters.

We do not have space to describe all of the parameterizations that have been proposed for even
the small selection of translational equivalence models we described in §2. However, there are a few
parameters that are found in many generative models, so we will describe them here.

One parameter that appears in most translation models is the word translation probability (Brown
et al., 1993). If the i th word ei of eI

1 is aligned to the j th word f j of f J
1 in our translational equivalence

model, then the associated parameter is p(f j |ei). This is relatively intuitive – we can think of this
parameter representing the probability that a translator, when presented with word ei , will choose to
translate it using word f j . Notice that the distribution ranges over {E × F}. Although our parameter
estimation methods (§4) will guarantee that many of the values in this distribution are 0, meaning that
we do not need to store them, it should be apparent that in most implementations the associated the table
will dominate disk and memory usage in our implementation.

The analogue to the word translation probability in phrase-based models is the phrase translation
probability. It is popular to represent this distribution directly as p(f̃i |ẽ j) for the phrase pair (f̃i |ẽ j)

(Koehn et al., 2003; Marcu and Wong, 2002). This poses representational and computational problems.
In principle, it means that we must store a table ranging over {E∗

× F∗
} – the problem we were trying to

18

avoid in the first place with our conditional independence assumptions. A common solution is to limit
phrase length to some arbitrary limit L , although this still leaves us with a very large potential table
size O(E L F L), so L is usually chosen to be small (Koehn et al., 2003; Marcu and Wong, 2002). A
recently proposed alternative is to compactly represent the training data in memory using a suffix array
and extract phrase pairs and compute probabilities as needed, although this results in a speed tradeoff
during decoding (Callison-Burch et al., 2005; Zhang and Vogel, 2005). Zens and Ney (2007) present
an alternative data structure that allows phrase tables to be efficiently accessed even when they are too
large to fit in main memory and must be kept on disk.

Another parameter based on the IBM Models is the fertility probability (Brown et al., 1993). Recall
from our discussion of IBM Model 4 that each target word ei chooses a number of source words φi

to which it will correspond. We can represent this using the parameter p(φi |ei). This implies that we
must arbitrarily bound the fertility in order to store the associated parameters (Brown et al., 1993). The
concept of fertility persists in some more recent translation models.

In generative models based on FST, we must parameterize the permutation decisions in some way. A
common way to do this is to parameterize based on the distance between the target words that are aligned
to adjacent source words – the so-called distortion. If we denote using a j the location of the target word
ea j that is aligned to f j in our translational equivalence model, then we say that the probability of
word f j appearing in position j of the permutation is P(a j = i) = p(a j − a j−1). Numerous other
parameterizations of this distortion probability have been proposed (Al-Onaizan and Papineni, 2006;
Lopez and Resnik, 2005; Och and Ney, 2000b; Toutanova et al., 2002; Vogel et al., 1996). One variation
is to make the probability conditionally dependent on a word class learned using unsupervised clustering
methods (Brown et al., 1992; Och, 1999). IBM Model 4 uses a particularly complex variation based on
target word distortion instead of source word distortion. Some phrase-based models also use a variant
of distortion (Koehn et al., 2003; Marcu and Wong, 2002).

In generative models based on SCFG, we must assign probabilities for each synchronous grammar
rule. Any number of parameterizations are available, often using methods from CFG parsing models
(see, e.g. Marcu et al., 2006).

3.1.2 Language Models

Language modeling for ASR is surveyed in Chen and Goodman (1998) and Rosenfeld (2000). Even
more background can be found in (Jelinek, 1998). Language modeling has not received much atten-
tion in the SMT community, which has preferred to focus on the more specialized translation models.
Most systems use smoothed n-gram models (§2.1), although syntax-based SCFG models of translational
equivalence are usually constructed to take advantage of a CFG language models (Charniak et al., 2003;
Wu and Wong, 1998). An example is given in Marcu et al. (2006).

Language models continue to be the subject of substantial active research, particularly for ASR.
Although many SMT systems use models that were popular in ASR several years ago, recent empirical
results show that SMT can benefit from the use of state-of-the-art methods in language modeling (Eck
et al., 2004; Kirchhoff and Yang, 2005; Och, 2005; Zhang et al., 2006b).

3.2 Discriminative Models

Generative models are useful in decoding (§5) because they correspond so closely to the translational
equivalence models that define the search space. However, there are tradeoffs. As we have seen, to
make them both theoretically well-founded and tractable, we must make very strong independence
assumptions. This means that the information that we can bring to bear at each individual decision point
is very limited. For instance, we are generally limited to translation between small numbers of words

19

in each sentence, although we expect in principle that knowledge of all words in a source sentence
may help us translate any particular word. Using generative models, there is no tractable mechanism to
represent this.

We can bring additional context into modeling by moving from generative to discriminative models.
In SMT, a convenient form for this is log-linear modeling (Berger et al., 1996b; Och and Ney, 2002).
The introduction of log-linear models to SMT follows from their increasing use in NLP (Berger et al.,
1996b; Ratnaparkhi, 1998), and reflects general trends in machine learning.

Log-linear models define a relationship between a set of K fixed features hK
1 (e, d, f) of the data and

the function P(e, d|f) that we are interested in. A feature can be any function h : E∗
× D∗

× F∗
−→

[0, ∞), that maps every pair of input and output strings to a non-negative value. An example of a feature
might be the number of times a particular word pair (ei , f j) appears in the data (Och and Ney, 2002); the
number of phrases in a segmentation of eI

1 (Koehn, 2004c); or the logarithm of the probability defined
by a generative model (or even one of its distributions) from the previous section. Most features used in
SMT to date have taken the latter form. Log-linear models take the form of Equation 7.

P(e, d|f) =
exp

∑K
k=1 λkhk(e, d, f)∑

e′,d′:Y (e′,d′) exp
∑K

k=1 λkhk(e′, d′, f)
(7)

The daunting normalization factor in the denominator is required only to make the function a well-
formed probability. This will be important during parameter estimation, but not during decoding, where
we can ignore it because it constant for any given f J

1 .
The log-linear model defined in Equation 7 has K parameters, λK

1 . These are called feature weights
or model scaling factors. They determine the contribution of a feature to the overall value of P(e, d|f).
Essentially, each parameter tells us the pairwise correspondence between the feature and the output
probability. A positive value λk indicates that the feature hK

1 (e, d, f) correlates with P(e, d|f); a neg-
ative value indicates an inverse correlation; and a value near zero indicates that the feature is not a
useful predictor of P(e, d|f). Notice that Equation 4 is a special case of Equation 7 when the following
conditions hold:

K = 2

λ1 = λ2 = 1

h1(e, f) = log P(e, d|f)
h2(e, f) = log P(e)

Log-linear models discriminate between different possible values eI
1 when presented with a particular

f J
1 . In contrast with generative models, there is no requirement that we assign a single probability to

every element of data. We may assign multiple probabilities to an element, or none at all. In fact, the
values that we assign are not required to be well-formed probabilities at all – the normalization factor in
Equation 7 takes care of this for us. In particular, we are not required to define probabilities for our input
data as we do in generative models. Because we are freed from the constraints of Bayes’ rule, features
can be overlapping – we could, for instance, use several of the generative models discussed previously,
even though each of them will have a different explanation of each word in the target language. In
principle, any other model of P(e), P(f|e), P(e|f), or P(e, f), or combination thereof, can be a feature. 7

7A justification for using log-linear models in this way was that a system based on P(e) · P(e, d|f) worked nearly as well
as P(e) · P(f, d|e) in empirical studies, even though the former cannot be theoretically motivated using Bayes’ rule (Och and
Ney, 2002; Och et al., 1999). Beginning with (Koehn, 2004a), several recent systems use both (e.g. Chiang, 2007; Simard
et al., 2005). It is not clear if this is beneficial (Lopez and Resnik, 2006).

20

Discriminative modeling is powerful because it frees us from the generative modeling requirement
that each term must conform to an event in our translational equivalence model, which is often chosen
for computational reasons rather than for its ability to distinguish between good translations. This allows
us to define arbitrary features that may help to improve translation. The primary art in discriminative
modeling is defining useful features. However, with a few exceptions (e.g. Och et al., 2004) this area has
been largely ignored or has been a secondary focus (Liang et al., 2006a; Marcu et al., 2006; Venugopal
et al., 2007).

4 Parameter Estimation

Once we have defined P(e, d|f), we need to assign values to its parameters, the actual values that are
used to compute it. We call this parameter estimation. In SMT, we use a parallel corpus as input to a
machine learning algorithm in order to learn the parameter values. Broadly speaking, we can say that
SMT relies on supervised learning, because we are given samples of input/output pairs.

Most SMT systems use a log-linear model of P(e, d|f) that incorporates generative models as feature
functions. Before we can learn the parameters of the log-linear model, we must fix values of the feature
functions, including any generative models used as features. This means that we must first estimate
any underlying generative models independently, and then separately estimate the parameters of the
log-linear models. An alternative approach is presented by Fraser and Marcu (2006a).

We describe parameter estimation for generative models in §4.1. We will then discuss the important
concept of word alignment in §4.2. Finally, we describe parameter estimation for log-linear models in
§4.3.

4.1 Parameter Estimation in Generative Models

An example parameter from our generative models is the translation probability p(Î|wind). Our model
says that we will use this value whenever we translate the word “Î” as “wind”. Before we can use the
value, we must determine what it is. We must do this for all of the parameters in our model – and as we
have seen, there are likely to be millions or billions of them.

Fortunately, we have some information available to us in the form of a parallel corpus. One way to
capitalize on this data comes to us from statistical estimation theory. We assume that the parallel corpus
was produced by our model using the unknown, true parameter values. Our goal, then, is to estimate
those values so that our estimates are as close as possible to the true ones.

If we denote our training data as C ⊂ {E∗
× F∗

}, the complete set of parameters as 2, and the
probability (or likelihood) of C under parameter set 2 as P2(C), then our goal is to choose 2 that
satisfies Equation 8.

2 = argmax
2̂

P2̂(C). (8)

Parameter estimation, then, is equivalent to finding the maximum of a function (the objective function)
– in this case, the likelihood function P2(C). We call this maximum likelihood estimation (MLE).
The parameter set 2 that satisfies the maximization problem in Equation 8 is the maximum likelihood
estimate. It is important to note here that this is not the only possible objective function, although it is
the one that is typically used for generative models. We will discuss a different objective function in
§4.3.1.

21

4.1.1 Learning Word Translation Probabilities

MLE is easy when we can observe all of the events for which we wish to estimate probabilities. Consider
a very simple model, the coin-flip model. In this model, we have a coin that comes up heads with
probability p(h). We don’t know p(h) and we would like to guess what it is. If we have access to
the coin itself, we can flip it a number of times and see how many times each side comes up. Suppose
that we flip the coin a number of times, and we count the number of times it comes up heads, which we
denote #(h). The total number of flips is the sum of the number of heads and tails, #(h + t). Most people
know intuitively that the value for p(h) should be #(h)/#(h + t). In fact, we can show analytically that
this relative frequency estimate corresponds to the MLE. It is worth noting that the MLE requires a
sufficient number of samples for this method to be accurate – we can see that if we flip the coin only
once, then the only possible outcomes are p(h) = 1 and p(h) = 0, either of which is likely to be wrong.
This issue has not received much attention in SMT, although Foster et al. (2006) show that methods to
smooth poorly estimated probabilities can improve performance. 8

Now suppose that we wish to estimate the parameters of a word-based generative translation model.
If we had access to an alignment –such as the one depicted in Figure 2 – for every sentence in our
corpus, then it would be easy to observe the fertility, substitution, and distortion for each word, and we
could estimate our parameters as easily as we did in the coin-flipping model. For instance, if we saw the
word “wind” #(wind) times, and it was aligned to the word “Î” #(a(Î,wind)) times, then we would
compute p(Î|wind) = #(a(Î,wind))/#(wind).

Unfortunately, we will discover that the human translators who produced our training data have
neglected to include alignment information. So, while we can see that “wind” and “Î” both cooccur
in many sentence pairs, we cannot see how many times they are actually aligned to each other. With
only the parallel text available to us, our initial translational equivalence model will define many ways
in which any sentence can be related, and only in some of these will “wind” be aligned to “Î”, so we
cannot simply assume this alignment. We can make some estimates based only on coocurrence – for
instance, we will estimate p(f |e) = 0 for words f and e that never cooccur in our training data.

One solution to this problem is to automatically generate an alignment, and then to use this alignment
as our training data for maximum likelihood estimation. We will describe word alignment methods in
§4.2. Alternatively, we need a method to estimate our parameters that will work even when we cannot
explicitly count all of the events that occur in the translational equivalence model relating eI

1 and f J
1 .

Since we will not be able to directly observe the outcome of each decision made by our model, we
can view the learning of the associated parameters as a form of unsupervised learning. 9 A method
that is commonly used to solve this problem in SMT is the Expectation-Maximization (EM) algorithm
(Dempster et al., 1977). EM is a hill-climbing algorithm that works by substituting observed counts
of events with expected counts. Although we cannot actually observe the number of times that “wind”
aligns to “Î”, we can compute the expected number of times that this happens if we assume some initial
value for 2, which we will call 20. We can then compute the expected count of the event E(a(Î,wind))

in any particular sentence pair (e, f) as follows.

E(a(Î, wind)) =
P20(a(Î, wind), f J

1 |eI
1)

P20(f J
1 |eI

1)

In short, we compute all possible alignments between f J
1 and eI

1 , and their probabilities under 20. We

8A discussion of smoothing is highly relevant to most NLP problems, but well beyond the scope of this paper. Chen and
Goodman (1998), Manning and Schütze (1999, Chap. 6), and Jurafsky and Martin (2000, §6.3) and are good starting points.

9In practice, we will usually have access to a small set of manually aligned data, developed for evaluation purposes (§4.2.5).
It is typical to test our parameter learning algorithm on an even smaller subset of this data, called the development data. Often a
small set of tuning parameters is modified based on evaluations against this data. This constitutes a form of weak supervision.

22

then sum the probability of only the alignments that contain the event that we are interested in, and
divide this by the sum of all possible alignments. If we apply this method to all parameters over the
entire corpus, we can produce a new estimate, 21, which can be used as a starting point for a new round
of estimation. Thus, EM can be defined according to the following recursion, for our observed training
data C and unknown alignment data D.

2i = argmax
2̂

P2̂(C, E2i−1(D)) (9)

The EM algorithm does not, in general – and in particular for most SMT models – guarantee convergence
to a globally optimal value for 2. However, it is guaranteed to produce monotonically non-decreasing
values for P2(C), and thus, convergence to a local maximum. As a consequence, it depends crucially
on a good initial estimate 20 to avoid a poor local maximum. A method for generating this estimate is
sketched in §4.2. Despite the various difficulties in using EM, it has been applied to a variety of other
NLP problems (e.g. Lari and Young, 1990; Merialdo, 1994).

A full discussion of the EM algorithm is beyond the scope of this paper. For a more detailed
overview, refer to Dempster et al. (1977). For a full account of the analytical solution to the EM algo-
rithm in the case the IBM Models, refer to Brown et al. (1993).

4.1.2 Learning Phrase Translation Probabilities

In order to train the parameters of a phrase-based model we must have access to a phrase-to-phrase
alignment. Unfortunately, the task of learning a phrase-to-phrase model directly is compounded by
the dictionary size; while a word-based dictionary would contain potentially O(E · F) entries, a phrase-
based SMT dictionary contains O(E L

· F L) entries for some maximum phrase length L . Computing EM
for phrase-based models requires the use of approximations and other substantial tradeoffs for reasons of
tractability (Marcu and Wong, 2002). In addition, generalizability of such a model is much worse due to
the small number of training samples relative to the size of the parameter space. An alternative solution
which has emerged is to first automatically generate a word alignment (§4.2), and then count all phrases
that are consistent with the alignment (Koehn et al., 2003; Och et al., 1999). We can then compute the
MLE using the hypothesized phrases as our observed events. We say that a bilingual phrase is consistent
with a word alignment if no word inside the phrase is aligned to any word outside the phrase. This is
illustrated in Figure 12.

4.1.3 Learning Parameters of Generative SCFG Models

As we have seen, SCFG models usually contain a word translation probability, which can be learned
using EM under the specific model (Wu, 1996; Yamada and Knight, 2001), or using word-translation
probabilities learned from other alignments (§4.2) and a supervised learning method.

If we are using a syntax-based method, we may also need to estimate the monolingual syntactic
probabilities. This can be done using standard methods from the field of natural language parsing.
Melamed (2004a) presents a series of steps whereby parallel corpora and parsing statistics can be co-
ordinated to learn the parameters of an arbitrary SCFG, using MLE (including EM) where necessary.
Hierarchical phrase-based grammars can be learned using a supervised method similar to the one used
for finite-state phrase-based models (Chiang, 2005, 2007).

4.2 Interlude: Word Alignment

As we have seen, we need a method of automatically generating word alignments as a precursor to some
of our supervised learning methods in generative models. Even in the case of unsupervised learning, we

23

虽然 北 风 呼啸

,
但 天空 依然 十分 清澈 。

Although north wind howls but sky extremely limpidstill

,

.

However

the

sky

remained

clear

under

the

strong

north

wind

.

,

Figure 12: Supervised learning of phrases from word alignments. Here, we view each sentence pair on
a grid. Word alignment is indicated by the presence of dark circles in the grid point corresponding to
the word pair. The rectangles outline bilingual phrase pairs that are consistent with this word alignment.

find that a problem with applying the EM algorithm to complex models such as IBM Model 4 is that
there is no efficient method to enumerate all of the possible alignments for a given sentence pair, which
is required by the expectation step of EM. A solution to this is to generate some smaller, efficiently
enumerable set of highly probable alignments as an approximation to the complete set, and sum over
these instead. One way to generate this set is to take the neighborhood of alignments that is most similar
to a high-probability alignment that we find using a simpler model. The neighborhood can be defined
by a set of heuristic functions (Brown et al., 1993; Och and Ney, 2003). This solution is dependent on
our ability to automatically find a good word alignment.

Word alignment is, in many ways, a microcosm of the translation problem: we must constrain the
search space using some equivalence model, define a mathematical model, estimate parameters, and
search for a good solution. The word alignment task can be viewed as a warm-up for decoding, since
it is more constrained – in word alignment, we need only find a correspondence between sequences,
whereas in decoding we will be required to find both the correspondence and the target sequence.

Over the past decade, a number of additional uses have been proposed for word alignment, including
the automatic acquisition of bilingual dictionaries (Melamed, 1996) which can be used in cross-language
information retrieval (Wang, 2005); and cross-lingual syntactic learning (Hwa et al., 2005; Lopez et al.,
2002; Smith and Smith, 2004; Yarowsky et al., 2001). For this reason, word alignment has become a
topic of significant study in its own right. The remainder of this section provides a brief overview of the
word alignment task. We will return to the more general topic of parameter estimation in §4.3.

24

4.2.1 Formal Definition

Formally, we say that the objective of the word alignment task is to discover the word-to-word corre-
spondences in a sentence pair (eI

1, f J
1). The alignment A of this pair is simply a set of these correspon-

dences. We say that A ⊂ {1, 2, ..., I } × {1, 2, ..., J }. If (i, j) ∈ A, then word ei is aligned to word f j .
Models for word alignment depend on the way in which they decompose this problem.

4.2.2 Asymmetric Models

Recall that in our word-based translational equivalence model (§2.1.1) an asymmetry exists in the align-
ment between eI

1 and f J
1 . In particular, each source word f j corresponds to one and only one target

word (or null). The target words are unconstrained, and each can link to an arbitrary number of words
(even zero), defined by its fertility. When we are generating an initial alignment to train this model, we
must observe the same constraints.

In fact, we can exploit this asymmetry to produce an efficient alignment algorithm by modeling the
alignment directly. To do this we introduce the alignment variable a to which we must assign a value
a J

1 . In this representation each element a j is a value in the range {0, 1, ..., I }. The value of a j represents
the position of the target word ea j to which f j corresponds. By making the very strong assumption
that each variable a j is independent, we arrive at Equation 10, which tells us how to find the optimal
alignment a.

a = argmax
a J

1

J∏
j=1

p(a j) · p(f j |ea j) (10)

This is the form of IBM Model 1 (Brown et al., 1993). If we make the additional simplifying assumption
that the distribution p(a j) is uniform, the only parameters that are required in order to compute the
optimal alignment are the word translation parameters p(f j |ei). On first glance, this may not seem to
be much of an improvement over the situation in IBM Model 4, since we still must learn the values in
the largest table ranging over {E × F}. However, notice that our independence assumptions reduce the
model to a set of J independent decisions with I + 1 possible outcomes. In this simple form, the space
of all possible alignments can be compactly represented, and the EM search is guaranteed to converge
to a single solution (Brown et al., 1993). Although this convergence will guarantee an optimal value
for P2(C), this optimal value may not produce the best alignments in practice, because maximizing
likelihood does not necessarily guarantee a reduction in error. This is particularly true if the model
makes too many independence assumptions, as Model 1 does. Moore (2004) proposes an alternative
method of Model 1 parameter estimation that produces better results in practice.

Notice that we can compute P(f|e) as a sum over Model 1 alignments as follows:

P(f|e) =

J∏
j=1

I∑
a j =0

p(a j) · p(f j |ea j) (11)

Thus Model 1 is a translation model, although it will not produce very good translations on its own
(Knight, 1999a). However, it is useful as a feature function in log-linear models, most likely because
it computes a correspondence between all words in e and all words in f (Lopez and Resnik, 2006; Och
et al., 2004).

We obtain better alignments when we move to a first-order dependency between the alignment
variables, as in Equation 12 (Vogel et al., 1996).

25

a = argmax
a J

1

J∏
j=1

p(a j |a j−1) · p(f j |ea j) (12)

Equation 12 is in the basic form of the well-known Hidden Markov Model (HMM). HMMs have been
applied to numerous problems in NLP, such as part-of-speech tagging (Merialdo, 1994). A key benefit
of HMMs is the availability of standard algorithms for EM parameter estimation (Baum, 1972) and
maximization (Viterbi, 1967). HMMs have been the subject of several studies in word alignment (Lopez
and Resnik, 2005; Och and Ney, 2000b; Toutanova et al., 2002). In general, they are very accurate,
significantly outperforming IBM Models 1, 2, and 3 in detailed empirical studies (Och and Ney, 2000b,
2003). HMMs are a common form of a sequence model that assigns a label to each element of a
sequence. In the case of alignment, the sequence is the source sentence and the labels are the target
words to which each source word corresponds. HMMs are generative models. A discriminative relative,
the conditional random field has also been used for alignment (Blunsom and Cohn, 2006).

Finally, we can use IBM Model 4 itself to perform alignment. Search is done by first generating
a good alignment with a simpler model, and then modifying it using hill-climbing techniques in con-
junction with the IBM Model 4 parameters (Brown et al., 1993; Och and Ney, 2003). The translation
parameters can also be imported from a simpler model; this makes IBM Model 4 highly dependent on
the models used to bootstrap it (Lopez and Resnik, 2005; Och and Ney, 2003). Och and Ney (2003) note
that the likely reason for the good performance of Model 4 is the first-order reordering dependence in the
distortion parameters, and proposes combining it with the HMM, which has a complementary first-order
dependence. This is accomplished by using both models as features in a log-linear framework.

Free implementations of IBM Model 4 are available for research purposes (Al-Onaizan et al., 1999;
Och and Ney, 2003). Although its use as a translation model has diminished, its use as an alignment
model remains widespread in many applications, including parameter learning for other models (Koehn
et al., 2003; Och et al., 1999; Smith and Smith, 2004; Yarowsky and Ngai, 2001). Various improvements
to Model 4 have been proposed (Dejean et al., 2003; Fraser and Marcu, 2006a).

4.2.3 Symmetric Alignment Models

The alignment models that we have described so far are asymmetric, following IBM Model 4. This is
a necessity if we plan to train a translation model with a corresponding asymmetry. However, many
applications of alignment allow symmetry, so we would like to allow symmetry in our alignments as
well.

One approach to symmetric alignment is to align our training corpus twice using an asymmetric
method, applying the asymmetry to each side in turn. We can then symmetrize by combining these
alignments using one of several methods.These include set union, set intersection, and a number of
heuristic methods, which usually begin with the intersection and proceed by iteratively adding links
(Koehn et al., 2003; Och et al., 1999). Matusov et al. (2004) present a symmetric word alignment
method based on linear combination of complementary asymmetric word alignment probabilities.

An alternative is to simply use an alignment algorithm that explicitly generates symmetric align-
ments. In this case, the alignment task corresponds to solving I · J binary decision problems: one for
each potential link in the set A. The complexity of this space depends on any constraints we put on the
links. With no constraints, the problem reduces to a set of binary decision problems and is tractable
under a wide variety of models and learning algorithms (Ayan and Dorr, 2006b; Ayan et al., 2005a,b;
Liang et al., 2006b). A common constraint is to require that each word in either sentence be linked
exactly once, or to null (Melamed, 2000). This constraint produces an exponential space of allowable
alignments because decisions are not independent of each other. A solution to this is to use a greedy

26

search algorithm called competitive linking (Melamed, 2000). A number of cooccurrence-based cor-
relation metrics have been used to score each link in this algorithm (Cherry and Lin, 2003; Gale and
Church, 1991; Melamed, 2000; Moore, 2005b).

4.2.4 Supervised Learning for Alignment

Although the alignment learning methods that we have described so far depend on unsupervised learning
of the alignment model parameters, it is possible to learn alignment models using supervised learning.
Callison-Burch et al. (2004) construct an experiment showing that alignment with the IBM Models could
be significantly improved with supervised learning. However, a primary limitation of supervised learn-
ing for alignment is that the number of sentences that have been aligned by human annotators is nearly
always several orders of magnitude smaller than the number of unannotated sentences. Supervised
learning algorithms must learn from a few hundred or thousand annotated sentences, in contrast with
unsupervised learning where we typically have access to hundreds of thousands or millions of sentences.
Therefore supervised learning of alignments is highly dependent on models which are sufficiently gen-
eral, with a compact set of parameters. The solution to this is to use discriminative models with rich
feature sets that do not depend heavily (or at all) on the specific identities of the words being aligned. In
particular, it is unrealistic to expect such models to learn distributions with large discrete ranges, such
as word-to-word probabilities, since we not have enough training data to populate the tables. However,
we can use probabilities learned using unsupervised methods as features in a discriminative model.

In the last two years, numerous supervised, discriminative alignment models have been proposed,
based on a wide variety of machine learning methods. These include transformation-based learning
(Ayan et al., 2005b), neural networks (Ayan et al., 2005a), large margin methods (Taskar et al., 2005),
perceptron learning (Moore, 2005a), and log-linear models (Fraser and Marcu, 2006a; Ittycheriah and
Roukos, 2005). When annotated alignments are available, these methods outperform unsupervised
methods.

4.2.5 Evaluation of Word Alignment

In SMT, the ultimate measure of word alignment is in its contribution to parameter estimation of our
translation models. If the use of a particular word alignment improves our downstream translation
results, we can conclude that the time spent developing our word alignment system was worthwhile.

Word alignment is also used for tasks other than SMT parameter estimation, and any number of
other task-based evaluations could be established based on these applications. Although task-based
evaluations are preferable, it is possible to evaluate word alignment intrinsically, by comparison with
alignments prepared by human annotators. It is typical to select a few hundred sentences of a training
corpus for this purpose; several examples in different language pairs have been produced (Melamed,
1998; Mihalcea and Pedersen, 2003; Och and Ney, 2000b). Ideally, each sentence is aligned by multiple
annotators and the results are merged. Annotations may contain two sets of links: the sure set S, which
contains only links about which all annotators are certain, and the probable set P , which may include
links that were identified only by some annotators, or which represent links about which annotators were
uncertain, in particular “idiomatic expressions, free translations, and missing function words” (Och and
Ney, 2000b). It has recently been observed that probable annotations introduce undesirable bias in most
standard alignment metrics (Fraser and Marcu, 2006b).

Given the set of hypothesized alignment links A, it is straightforward to compute the precision
|A∩ P|/|A| corresponding to the fraction of accurate links in the hypothesized alignment, and the recall
|A ∩ S|/|S| corresponding to the fraction of “true” links were discovered by the alignment algorithm. 10

10Precision and recall metrics are commonly used to evaluate NLP tasks in which the outcome is a set.

27

The most commonly used metric, which combines these statistics, is the alignment error rate (AER)
given in Equation 13 (Och and Ney, 2000b).

AE R = 1 −
|S ∩ A| + |P ∩ A|

|S| + |A|
(13)

A similar metric was proposed by Ahrenberg et al. (2000). This type of evaluation may be used to
ensure that quality alignments are used as input to supervised training methods.

Although intrinsic evaluation of word alignments has become popular, it unclear what the exact
relationship is between such evaluations and SMT performance. Several recent studies have reported
poor correlation between AER and commonly used MT performance metrics (§6) (Callison-Burch et al.,
2004; Ittycheriah and Roukos, 2005; Koehn et al., 2003). This relationship has recently become the
subject of increased scrutiny (Ayan and Dorr, 2006a; Fraser and Marcu, 2006b; Lopez and Resnik,
2006). In particular, Fraser and Marcu (2006b) reports that unbalanced F-measure is a better predictor
of SMT performance. The F-measure is given in Equation 14.

F =
|S ∩ A|

α|S| + (1 − α)|A|
(14)

In this metric, the parameter α is used to move balance towards either precision or recall.

4.3 Estimation in Log-Linear Models

We now return to the subject of estimating translation model parameters. One we have estimated the
parameters of all of our generative models, we can turn our attention to the estimation of the log-linear
feature weights λK

1 (§3.2). It is advisable to use separate training data from the data that is used for
training the generative models, in order to avoid overfitting.

As in generative models, the maximum likelihood objective (Equation 8) can be used to train the
feature weights. A nice property of log-linear models is that the search problem defined by the maximum
likelihood objective function has a single optimum point, which we can find using an iterative search
method called generalized iterative scaling (Darroch and Ratcliff, 1972). In log-linear models this MLE
is the dual of the maximum entropy estimate. 11 The training of log-linear SMT models is a supervised
learning problem, since we are given inputs and the corresponding best output, and all features are
known (some features may need to be computed by our decoder prior to application, if for instance
they rely on a particular model of translational equivalence as in the case with underlying generative
models). Unfortunately, the the normalization factor represented by the denominator of Equation 7
must be computed for the MLE, and this is expensive to compute even in the supervised case because
it involves a sum over all possible translations. The typical solution is to use an approximation to this
sum. Och and Ney (2002) use the n-best output of an SMT decoder for this purpose.

4.3.1 Minimum Error-Rate Training

Recently, automatic evaluation metrics for MT have become widespread (§6). They facilitate a new
method of parameter estimation: minimum error-rate training (MERT) (Och, 2003). In MERT, we
assume that the best model is the one that produces the smallest overall error with respect to a given error
function. Unfortunately, determining the amount of error in a translation is not a well-defined problem
with an objective answer, and numerous error metrics have been proposed. However, Och (2003) shows
empirically that we achieve best results for any particular error function when we use that function in our
objective function under MERT. This suggests that we can improve the accuracy of our SMT systems

11For this reason, log-linear models are often called maximum entropy models in the NLP literature.

28

(1)

(2)

(3)

(4)

(5)

Figure 13: Illustration of the MERT line minimization function for optimizing a single parameter λk .
In (1) we compute Pλk (ê|f) as a line in λk for each candidate translation ê of a single source sen-
tence f. We then find the intervals at which the optimal candidate ê changes by computing the in-
tersection points of these lines. Once the best candidates and intervals are known, we can compute
Eλk (argmaxê P(ê|f), e) as a function of λk . This function is shown in (2). We repeat this procedure for
a new source sentence in (3) and (4). Finally, we add the single-sentence error functions (2) and (4) to
compute the aggregate error function for both input sentences. This function is shown in (5). Applying
this process iteratively to all sentence pairs in the training corpus, we can compute the full error function∑

(e,f)∈C Eλk (argmaxê P(ê|f), e). To optimize, we simply walk along all intervals of this function until
we determine the minimum.

simply by devising an error function that more closely corresponds to human judgements of translation
error, or with some task-based notion of accuracy. Ideally, this means that SMT researchers can focus
on the question of what makes a good translation, instead of what makes a good translation model (a
task fraught with many orthogonal considerations). With MERT, better evaluation functions should lead
directly to better translation.

Formally, we say that if we are given an error function E(ê, e) defining the amount of error in some
hypothesized translation ê with respect to a known good actual translation e, then the objective function
is: 12

λK
1 = argmin

λ̂K
1

∑
(e,f)∈C

E(argmax
ê

Pλ̂K
1
(ê|f), e) (15)

The optimization contains an argmax operator, which precludes calculation of a gradient. Although
there is no way to find a guaranteed optimal solution under these circumstances, we can find a good

12As we will see in §6, we sometimes have access to multiple good translations of f. It is straightforward to modify our
functions to accommodate this, and has no real impact on the mathematics.

29

Algorithm 1 Minimum Error Rate Training
1: Input initial estimate λK

1,0 F From MLE or prior knowledge
2: Input training corpus C
3: λK

1 = λK
1,0

4: Ebest =
∑

(e,f)∈C E(argmaxê PλK
1
(ê|f), e)

5: repeat
6: Generate M random estimates λK

1,1, ..., λ
K
1,M F To avoid poor local maximum

7: for m = {0, 1, ..., M} do
8: for k = {1, 2, ..., K } do
9: λ′

k,m = LINE-MINIMIZE(k, λK
1,m, C)

10: Ek,m =
∑

(e,f)∈C E(argmaxê Pλk−1
1,m λ′

k,mλK
k+1,m

(ê|f), e)
11: if Ek,m < Ebest then
12: λK

1 = λk−1
1,m λ′

k,mλK
k+1,m

13: Ebest = Ek,m

14: end if
15: end for
16: end for
17: λK

1,0 = λK
1

18: until no change in λK
1

19: return λK
1,0

20:

21: function LINE-MINIMIZE(k, λK
1 , C)

22: Eλk (C) = 0
23: for all (e, f) ∈ C do
24: for all ê ∈ DECODER-N-BEST(f) do
25: m ê = hk(ê, f) F slope of Pλk (ê, f)
26: bê =

∑k−1
k′=1 λk′ · hk′(ê, f) +

∑K
k′=k+1 λk′ · hk′(ê, f) F intercept of Pλk (ê, f)

27: end for
28: i = 0
29: 1[i] = −∞ F left interval boundary
30: e[i] = argminê m ê F equivalent to argmaxê limλk→−∞ P(ê, f)
31: repeat
32: i = i + 1
33: 1[i] = minê X-INTERSECT(m ê, me[i−1], bê, be[i−1]) > 1[i − 1]
34: e[i] = argminê X-INTERSECT(m ê, me[i−1], bê, be[i−1]) > 1[i − 1]
35: until No more intersection points found
36: 1i+1 = ∞

37: Eλk (argmaxê P(ê|f), e) = {λk → E(ê, e) : ê = e[i], 1[i] ≤ λk ≤ 1i+1}

38: Eλk (C)+ = Eλk (argmaxê P(ê|f), e)
39: end for
40: return λk = argmin Eλk (C)

41: end function

30

parallel
corpus

(1)

generative
translation

model
generative
language

model
other generative

models or
features

log-linear
model

parallel
corpus

(2)

input
sentences

output
sentences

maximum
likelihood
estimation

minimum
error rate
training

decoding

Figure 14: Putting it all together: the flow of data, models, and processes commonly involved in the
deployment of an SMT system.

solution using the method sketched in Och (2003), which we describe in greater detail here due to its
extremely widespread use. Pseudocode is given in Algorithm 1.

The MERT algorithm works by iteratively generating random values for λK
1 , which it then tries to

improve by minimizing each parameter λk in turn while holding the others constant. At the end of this
optimization step, the optimized λK

1 yielding the greatest error reduction is used as input to the next
iteration.

The single-parameter line minimization algorithm at the core of MERT is illustrated in Figure 13. It
is based on the observation that if we hold all but one parameter λk constant, then P(e|f) for any given
pair e and f is P(e|f) = λkhk(e, f)+ (

∑k−1
k′=1 +

∑K
k′=k+1)λk′,mhk′(e, f). Notice that the second term of the

sum is constant, making the function linear in λk . Using the intersections of these lines for all candidate
translations in a decoder’s N -best list for a single input sentence, the algorithm exhaustively computes a
representation of the piecewise linear function E(argmaxê P(ê|f), e)). Assuming that our error function
is additive, we simply sum over all input (e, f) ∈ C to compute the complete function that we are trying
to minimize. 13 We then select the midpoint in the interval which minimizes the function.

4.3.2 Purely Discriminative Training

Most current state-of-the-art SMT systems use log-linear models with generative submodels in combi-
nation with MERT in order to optimize whatever error function is chosen for evaluation. An overview of

13Sometimes this function is not additive, as is the case with the commonly used BLEU score (§6). Usually, however,
the function is computed in terms of aggregate values over the training set which are additive. If this is the case, we simply
keep track of all of the additive values which are used to compute the error function over each interval, and then perform the
computation once all intervals are known.

31

the architecture used in these systems is shown in Figure 14. This approach is not purely discriminative;
it uses generative model estimates as input to a discriminative learner that optimizes a small number of
feature weights. In pure discriminative learning, features are usually binary or integral. For instance,
we might define a word pair feature h(e, f) as follows:

h(e, f) =

{
1 if the input contains f and the output contains e
0 otherwise

It is easy to see that under this defintion, the weight given to this feature by the combined genera-
tive/discriminative training procedure outlined above is log p(f |e)λ. However, as we have noted, p(f |e)
is estimated to maximize likelihood, not translation performance. We might instead wish to assign a
weight to this feature that is estimated to directly optimize translation performance. This is the goal of
pure discriminative learning, which can be accomplished by a number of different algorithms. Recent
examples have included the perceptron algorithm (Liang et al., 2006a), maximum margin estimation
(Tillmann and Zhang, 2006), and decision tree learning (Wellington et al., 2006a). Pure discriminative
learning is promising, but there are still a number of significant obstacles to overcome, most notably
the ability to scale to the very large datasets and billions of paramters required for SMT. The present
approaches take many days to train on computing clusters.

5 Decoding

Now that we have a model and estimates for all of our parameters, we can translate new input sen-
tences. This is called decoding. In principle, decoding corresponds solving the maximization problem
in Equation 16.

e = argmax
(ê:Y (e,d))

P(ê, d|f) (16)

We call this the decision rule. Equation 16 is not the only possible decision rule, although it is by far
the most common. Alternative decision rules are presented in Kumar and Byrne (2004) and Venugopal
et al. (2005).

This is a difficult optimization. Recall that P(e, d|f) ranges over {E∗
× D∗

× F∗
}. Even though

f is fixed, and even though the number of possible outputs (e, d) is finite due to the constraints of
our translational equivalence model, there is still a very large number of them to consider in order to
maximize the function. Therefore, a primary objective of decoding is to search this space as efficiently
as possible.

There are two types of decoders, corresponding to our two broad types of translational equivalence
models: FST and SCFG.

5.1 FST Decoding

Nearly all approaches to finite-state decoding follow a general framework described in Berger et al.
(1996a) and Wang and Waibel (1997), which is a generalization of the ASR search algorithm that has
been modified to accommodate reordering.

In this algorithm, search proceeds through a directed acyclic graph of states representing partial or
completed translation hypotheses, which are constructed from left-to-right in the target language word
order. An example graph is depicted in Figure 15. Each state consists of the following elements.

(1) A coverage set C ⊆ {1, 2, ..., J } enumerates the positions of the source string f J
1 that have been

translated.

32

虽然 北 风 呼啸

,
但 天空 依然 十分 清澈 。

Although north wind howls but sky extremely limpidstill

,

.
1 2 3 4 5 6 7 8 9 10 11

(1)

(2)

C={}

sky
C={7}

Although
C={1}

,
C={1}

Although

the sky

However ,
north

C={1,2}

northern
C={1,2}

north

the northern

the northern

north

the north

wind
C={1,2,3}

wind

wind

still
C={7,8}

remained
C={7,8}

was still

remained

very
C={7,8,9}

clear
C={7,8,9,10}

clear

very

clear
very

clear

Figure 15: Illustration of search in a finite-state decoder. The input sentence (1) generates a large search
graph, partially illustrated in (2). In this illustration, each arrow represents extension of a hypothesis
by appending the words on the arrow. In each state, we depict the coverage set and the most recently
generated target word, which is needed for computation of the language model (assuming a bigram
language model for simplicity). Notice that states can only be combined if the coverage set and the
most recently produced words match. The cost of each transition is a combination of the model costs
incurred by appending the corresponding target words to the hypothesis.

(2) If using an n-gram language model, the n − 1 most recently generated target words are kept
for computing the n-gram language model component of the probability. These words and the subset C
constitute the state’s signature.

(3) The cost h of our partial hypothesis is computed as the combination of model costs associated
with the hypothesis. This will be fairly straightforward for any generative model based on the underlying
translational equivalence model, since we will be reconstructing the events that occur in that model, and
we can simply apply the associated probabilities. It may or may not be difficult for a discriminative
model, depending on the specific feature functions.

(4) The estimated cost g of completing the partial hypothesis is computed heuristically. Because
this computation must be done quickly, we usually use only the single-best word-to-word (or phrase-to-
phrase) costs in this heuristic function (Koehn, 2004a).

Hypotheses in this space are extended by adding one or more source word indices to the coverage
set and appending one or more target words to the hypothesis string to produce a new state. This
corresponds to the translation of the newly covered source words by the newly generated target words.
We apply model probabilities accordingly to update the partial cost h. It is straightforward to implement
specific extension operators by which we can apply this algorithm to IBM Model 4 (Germann et al.,

33

2004; Tillman and Ney, 2003), phrase-based models (Koehn, 2004a), or any number of other finite-state
translation models (Nießen et al., 1998; Wang and Waibel, 1997).

In order to organize the search space, hypotheses may be stored in one or more priority queues,
usually corresponding to either the cardinality |C | of the coverage set, or to the coverage sets themselves
(Tillman and Ney, 2003). 14 This is done to ensure that comparisons between hypotheses – used for
sorting and pruning purposes within each priority queue – are done on hypotheses of relatively equal
depth in the search space. (Wang and Waibel, 1997) If we were to compare hypotheses of unequal
length, our heuristic functions, which favor shorter hypotheses, will cause more complete hypotheses to
be pruned from the priority queue prior to complete evaluation.

Each hypothesis contains a backpointer to the hypothesis that generated it. If two hypotheses have
matching signatures, only the higher-scoring hypothesis is kept (Koehn, 2004a; Och et al., 2001). This
is a risk-free optimization because the set of all extensions to these two hypotheses will be the same;
therefore the higher-scoring partial hypothesis is guaranteed to generate a higher-scoring completed
hypothesis.

The search space defines a finite-state word lattice, in which we can find the score of any particular
hypothesis by traversing the lattice (Koehn, 2004a; Ueffing et al., 2002). We can use standard finite-
state methods for finding the best path (or paths) through this lattice. It is possible to directly implement
such decoders as a cascade of weighted finite-state transducers (Knight and Al-Onaizan, 1998; Kumar
et al., 2006). These transducers will differ from the ones we describe in §2.1. However, the decoding
algorithm we have described does, in principle, reverse the set of transductions represented by those
models; we can see, for instance, that it reconstructs the English sentence in the order that it was fed
into the transducer, at each step consuming the source words that were created by transductions over the
associated target word or words.

Watanabe and Sumita (2002) present a variation on this algorithm in which the target language
hypothesis may be extended by adding words to either the left or right.

5.1.1 Optimality and Pruning

Using A∗ heuristics, we can solve the optimization in Equation 16 exactly (Och et al., 2001). Germann
et al. (2004) illustrate how we can also do this by converting the problem to a linear integer programming
problem and using standard tools to solve it. Unfortunately, optimal search in this space is NP-complete,
as Knight (1999a) illustrates by reduction to the Traveling Salesman Problem. This boils down to the fact
that, in general, finite-state models allow all possible permutations of the input string in the reordering
model. Fortunately, optimal search is not strictly necessary, because there are likely to be many good
translations of a sentence. If many high-probability translations are good translations, then a certain
amount of search error is acceptable, particularly if it allows us to improve search speed. A number of
strategies are used to do this.

(1) We can restrict the allowable reorderings. In the search space we have described, any uncovered
source word may be translated at each step. Since this is largely responsible for the combinatorial
explosion, and because it is likely to be unrealistic, one way that we can limit this effect is to permit
only the first k uncovered words to be translated (Berger et al., 1996a). A language-specific variation
on this approach is illustrated by Tillman and Ney (2003). In the extreme case, only the first uncovered
word (or contiguous sequence of words in the case of phrase-based models) may be translated, which
leads to a monotonic alignment between the source and target strings (Banchs et al., 2005; Tillmann
et al., 1997; Zens and Ney, 2004).

14This priority queue is often called a stack in literature, and the algorithm that we describe is called stack decoding,
although its central object is technically not a stack. This is due to historical reasons, since the algorithm traces its lineage
back to so-called stack decoding algorithms of ASR.

34

(2) We can prune hypotheses from the search space. Two pruning methods are commonly used:
threshold pruning and histogram pruning. (Koehn, 2004a; Tillman and Ney, 2003) In threshold pruning,
any hypothesis with a probability less than t times the probability of the best estimate in the same
priority queue is removed. In histogram pruning, only the n best hypotheses are kept in any priority
queue. Search with these methods is also known as beam search, and we refer to t or n as the size of the
beam.

When the parameters of these optimization methods are properly tuned, we gain large speedups at
the cost of relatively little accuracy (Germann et al., 2004; Koehn, 2004a; Tillman and Ney, 2003; Zens
and Ney, 2004).

5.1.2 Greedy Decoding

An alternative to standard finite-state decoding is greedy decoding (Germann, 2003; Germann et al.,
2004; Marcu and Wong, 2002). In greedy decoding, we generate an initial hypothesis by substituting
each source word with the highest-probability target word, using the original target word order. This
gives us a complete word-for-word gloss of the source sentence. We then use hill-climbing heuris-
tics in an attempt to find higher-scoring hypotheses by considering neighboring translations produced
by changing the order or translation of one or two words at a time, and choosing the highest-scoring
neighbor. This new hypothesis becomes the starting point for the next iteration of the algorithm. The
algorithm terminates when no higher-scoring hypothesis can be found. With some optimizations, this
algorithm runs in time nearly linear in target sentence length (Germann, 2003). The tradeoff is that the
algorithm considers a much smaller space of possible translations, and its error rate is correspondingly
higher (Germann et al., 2004).

5.2 SCFG Decoding

Decoding with SCFG models is equivalent to CFG parsing (Melamed, 2004a). As the CFG tree of the
input is reconstructed, the corresponding target language tree is produced in parallel according to the
SCFG rules that are applied. Most practical syntax-based decoders are straightforward extensions of the
CKY or Earley algorithms for parsing monolingual context-free grammars in one dimension (Chiang,
2007; Marcu et al., 2006; Venugopal et al., 2007; Wu and Wong, 1998; Yamada and Knight, 2002;
Zens and Ney, 2003). A benefit of this is that the standard algorithms and optimizations that have been
developed for CFG parsing can be applied to SMT (Melamed, 2004a). Furthermore, it has been shown
that generative parameter estimation, decoding, and most other applications can be performed using a
single algorithm (Goodman, 1999), which means that we do not need to spend development time on
separate algorithms for these tasks, as is typically done for FST models.

SCFG decoding works by attempting to cover larger and larger spans of the input sentence. A span
is simply a contiguous sequence of words. States in the search space consist of a span, a nonterminal
symbol which covers the span, and any language model information needed to combine spans Chiang
(2007); Melamed (2004b); Zhang et al. (2006a). In order to construct larger spans, we find SCFG
rules which construct the exact sequence of nonterminals that we have already inferred to cover a set of
smaller, adjacent spans. Once we have constructed the full source language parse, we produce output
using an in-order traversal based on target language ordering of the tree. This is illustrated in Figure 16.

There are O(J 2) possible spans in the source sentence. It is easy to see from this that SCFG de-
coding is, in principle, much less computationally expensive than finite-state decoding. In finite-state
decoding, we must enumerate all possible coverings of the input sentence, whereas in SCFG decoding
we enumerate only spans. SCFG decoding is, in general, polynomial in sentence length (Melamed,
2003). We can apply beam search methods to improve search speed. However, it is often slower than

35

北 风 呼啸
north wind howls

JJ
(1,2)

NN
 (2,3)

JJ
(3,4)

NPB
(1,3)

1 2 3 4

DT
(0,0)

NP
(1,4)

(1)

(2)

(3)

(4)

JJ → strong	
 /	
 呼啸NN → wind	
 /	
 风JJ → north	
 /	
 北

DT → the	
 /	
 ε

NP → DT1 NPB2 / DT1 NPB2	

NPB
(1,4)

NPB → JJ1 NN2 / JJ1 NN2	

the strong north wind

DT

JJ

JJ NN

NPB

NP

NPB

NPB → JJ1 NPB2 / NPB2 JJ1	

(5)

Figure 16: An illustration of SCFG decoding, which is equivalent to parsing the source language. (1)
Scan each source word and associate it with a span. (2) Apply SCFG rules that match the target spans.
(3) Recursively infer larger spans from smaller spans. (4) We can also infer target language words with
no matching span in the source language, if our grammar contains SCFG rules that produce these words
correspondent with ε in the source language. (5) Read off the tree in target-language order.

FST decoding with tight reordering constraints. A number of optimizations are used to speed up search.
Chiang (2007) describes a clever optimization called cube pruning that prevents excessive combination
of hypotheses in adjacent subspans. Zhang et al. (2006a) describe a clever method for binarizing rules
containing more than two nonterminals, which helps reduce grammar constants for parsing and enables
n-gram language model integration. Venugopal et al. (2007) present an alternative method based on de-
layed language model integration, in which the parse graph is first constructed quickly with simplified
language model statistics, and then expanded in a second pass using a full language model, following
only the most promising paths.

5.3 Reranking

Even if there are no search errors and we produce the translation that exactly optimizes our decision
rule, the translations produced by our decoder may not be the actual best translations according to human
judgement. It is possible that the search space explored by the decoder contained a better translation, and
our decoder assigned a lower score for this hypothesis because its estimate of P(e, d|f) was incorrect.
This is called model error.

One approach to reducing model error is reranking or rescoring. In reranking, we first run our

36

decoder, and rather than merely outputting the highest-scoring translation, we output N highest-scoring
translations for some value N . These translations are then input to an alternative model with access to
more feature functions than may be efficiently computed in our decoder, or which are otherwise difficult
to incorporate. Hopefully, this alternative model can give us more accurate scores than the one used in
decoding.

Reranking approaches to SMT are described in Och et al. (2004), Shen et al. (2004), and Kumar
and Byrne (2004). Och et al. (2004) show using oracle studies on decoder n-best lists that large gains in
accuracy are possible with rescoring, although so far these are unrealized.

6 Evaluation

How can we know if the output of our SMT system is any good? Many methods have been proposed to
evaluate MT output. Hovy et al. (2002) attribute to Yorick Wilks the remark that “more has been written
about MT evaluation over the past 50 years than about MT itself”. In the discussion that follows, we
will narrowly focus on methods that have figured prominently in the evaluation of statistical systems.

Traditionally accepted measures of MT evaluation have required examination of MT system output
by human judges, who rank the adequacy of the translation in conveying the source language meaning
and the fluency of expression in the target language syntax. In general, we can regard these or other
task-related measures as ideal; if it was possible, we would optimize for these directly. Unfortunately,
this would require human judges to rank the vast number of translations considered in the optimization
process. In general, human evaluation is expensive in both the time taken to perform the evaluation,
and in monetary cost, since we will usually need to pay for the expertise of bilingual evaluators. This is
often out of the question even for iterative system development, where we will need to perform regular
evaluation to determine if changes are beneficial to performance. The next best thing is to develop
automatic metrics which closely correlate with human judgement. The closer that these metrics are to
the real objective, the better our performance on that objective will be after we apply discriminative
training (§4.3).

One important element of automatic metrics is the use of a set of test sentences for which we already
have human translations. These can come from a parallel corpus, although we must take care to use a
separate set of sentences from the set we used for training. The automatic evaluation methods are based
on partial string matching between the output and these reference translations, as illustrated in Figure 17.
However, the use of a single reference may bias the evaluation towards a particular translation style. In
order to mitigate against this and reflect the diversity of possible good translations, it is common to use
multiple references. This requires the use of human translators to produce the additional references, but
this is still a one-time cost.

One metric for evaluation is the well-known Levenshtein or edit distance, which is borrowed from
ASR evaluation, where it is known as the word error rate (WER) (Och et al., 1999). The WER sums
the number of insertions, deletions, and substitutions required to transform an output sentence into the
reference sentence. Unfortunately, this metric is less appropriate for MT than ASR, because it does
not recognize word reorderings. A word that is translated correctly but in the wrong location will be
penalized as a deletion (in the output location) and an insertion (in the correct location). This problem
motivates the use of position-independent word error rate (PER), which is similar to WER but does not
penalize reorderings, because it regards the output and reference sentences as unordered sets rather than
totally ordered strings (Och et al., 1999).

For the last several years, the most commonly used metric has been the bilingual evaluation under-
study or BLEU metric (Papineni et al., 2002). The BLEU metric considers not only single word matches
between the output and the reference sentence, but also n-gram matches, up to some maximum n. This

37

However , the sky remained clear under the strong north wind .

Although the northern wind shrieked across the sky , but was still very clear .

Although a north wind was howling , the sky remained clear and blue .

The sky was still crystal clear , though the north wind was howling .

Despite the strong northerly winds , the sky remains very clear .

HYPOTHESIS

REFERENCES

Figure 17: Example of partial string matching used for most evaluation methods. Here we show a single
output hypothesis compared with four reference translations. Sequences of words in the hypothesis that
match sequences in any of the reference translations are circled. Likewise, sequences of words in each
reference that are found in the hypothesis are circled. Most evaluation metrics are based on functions of
counts of these matches.

allows it to reward sentences where local word order is closer to the local word order in the reference.
Furthermore, the BLEU metric is a precision-oriented metric; that is, it considers the number of n-gram
matches as a fraction of the number of total n-grams in the output sentence. The fraction is computed
separately for each n, and a geometric average is taken. This biases the metric towards translations that
drop words for which the translation is uncertain, so the metric also includes a weighted brevity penalty,
which penalizes output sentences that are much shorter than the reference. A number of other metrics
based on word matching include precision and recall (Melamed et al., 2003), and length of the longest
common subsequence (Lin and Och, 2004). All of these algorithms have variants which work with
multiple reference sentences. A key element of most research in this area is the identification of metrics
that correlate with human judgement in controlled studies.

The BLEU has been highly influential in SMT research. It is reported in most recent SMT literature,
and it has been used as the basis for a number of comparative evaluations (Doddington, 2002; Koehn
and Monz, 2005, 2006). It is commonly used in the objective function for minimum error-rate training
(Och, 2003).

The use of the BLEU score has always been controversial. Habash (2003) presents an early critique
of the metric. A number of counterexamples have been published regarding the metric’s correlation
with human judgement (Callison-Burch et al., 2006; Turian et al., 2003), and other potential problems
have been constructively demonstrated (Callison-Burch et al., 2006).

Despite controversy, automatic evaluation has had a profound impact on progress in SMT research,
and it is likely to continue in some form. The identification of new, better metrics for MT evaluation is
the subject of ongoing research. Recent proposals include the METEOR metric, which enhances token
matching with weighted matching based on morphological or semantic similarity (Banerjee and Lavie,
2005). An alternative approach is the translation edit rate (TER), which constructs reference sentences
based on system output, and computes the number of edits required to generate these targeted references
from a hypothesis sentence. In this case, movement of a whole phrase is counted as a single error. This
task-oriented metric represents “the amount of work needed to correct the translations.” (Snover et al.,
2006). There is also work in using machine learning methods to produce better metrics (Kulesza and
Shieber, 2004; Lita et al., 2005).

38

It is not always clear whether a difference in scores between two systems represents a significant
difference in their output. Koehn (2004b) describes a method to compute statistical confidence intervals
for most automatic metrics using bootstrap resampling.

7 Current Directions and Future Research

At the time of this writing, there are many common elements in the best systems, although there is also
growing diversity. The following attributes are characteristic of nearly all the best systems: phrase-
based translational equivalence models (in either the FST or SCFG framework); log-linear models with
a small set of generative features; and minimum-error rate training. Most of the evidence comes from
various evaluation settings (Doddington, 2002; Koehn and Monz, 2005, 2006).

All of these methods were introduced less than ten years ago, some considerably more recently.
SMT has made swift progress, and there is considerable optimism for future successes. Nonetheless,
there remain a large number of hurdles and open questions in the field. Refinements to modeling tech-
niques and parameter estimation methods will no doubt continue. Recent developments in machine
learning, which have recently been applied to alignment, will increasingly be applied to machine trans-
lation, although additional work is needed to scale them up to data sizes commonly used in SMT. To
complement this work, better feature engineering will be required. However, other interesting issues are
also likely to increase in importance.

Most of the standard evaluations in SMT have focused on the translation of news and government
texts. There is very little work on open-domain translation, particularly for informal genres – which de-
scribes much of the information found on the internet, and for which translation is in demand. Although
it is possible to mine data from the web (Resnik and Smith, 2003), this resource is so far underutilized,
with most studies using news and government texts in training. Statistical methods are notoriously sen-
sitive to domain differences, however, so the move to informal text is likely to present many interesting
challenges.

Another understudied problems in SMT is the translation of English into other languages. Most
studies have focused on translation from other languages into English. This probably obscures some
deficiencies in the current approaches, since it is likely easier to map morphologically rich languages
such as German and Arabic onto a relatively morphologically impoverished language such as English.
This can be seen as a movement from a higher-dimensional to a lower dimensional space, and some
data loss is not harmful. Translation in the other direction is likely to require much more attention to
this issue. Some experiments in morphologically rich translation modeling have recently been reported
(Goldwater and McClosky, 2005; Nießen and Ney, 2004; Schafer and Drabek, 2005). Koehn et al.
(2006) describe factored models, a framework for modeling with morphology and other annotations.

Evaluation of MT systems will probably continue to be a focus, since the minimum error-rate train-
ing technique has emphasized the importance of evaluation metrics that correspond to human judgement.
However, as we have seen, the methods currently used for evaluation of SMT systems are holistic, and
provide very little insight into the systematic errors made by a system. They are especially useless for
identifying sentence-level errors made by a system because the scores are not reliable at that granularity
– they are only meaningful in aggregate. For this reason, the relative merits and drawbacks of different
models with respect to different types of translation error are not well understood. Error analysis tech-
niques have not been substantially explored, although it has recently been identified as an important task
(Och, 2005). A few techniques for error analysis (Chiang et al., 2005; DeNeefe et al., 2005; Popovic
et al., 2006) and confidence estimation (Ueffing and Ney, 2005) have begun to emerge, but in general
this area remains underexplored.

Finally, although fully automatic MT is often treated as the objective in many SMT studies, it is

39

certainly not the only objective – perhaps not even the primary objective. Understanding the translation
needs of users will be critical to the continued improvement of MT services. Integration with with
speech recognition, information retrieval, document summarization, question-answering, and other NLP
applications will no doubt become increasingly important as SMT takes its place alongside a suite of
tools for global information access.

Acknowledgements

I would like to thank David Chiang, Nitin Madnani, Austin Parker and Reiner Schulz for helpful feed-
back on previous drafts. This paper has benefitted immensely from illuminating discussions with Necip
Fazil Ayan, David Chiang, Nitin Madnani, Christof Monz, Philip Resnik, and Michael Subotin. Any
errors are entirely my own.

References

Alfred V. Aho and Jeffrey D. Ullman. Syntax directed translations and the pushdown assembler. Journal of
Computer and System Sciences, 3:37–57, 1969.

Lars Ahrenberg, Magnus Merkel, Anna S◦agvall Hein, and Jörg Tiedmann. Evaluation of word alignment systems.
In Proc. of LREC, volume 3, pages 1255–1261, May 2000.

Yaser Al-Onaizan and Kishore Papineni. Distortion models for statistical machine translation. In Proc. of ACL-
COLING, pages 529–536, Jul 2006.

Yaser Al-Onaizan, Jan Curin, Michael Jahr, Kevin Knight, John Lafferty, Dan Melamed, Franz Josef Och, David
Purdy, Noah A. Smith, and David Yarowsky. Statistical machine translation: Final report. Technical report,
Johns Hopkins University Center for Speech and Language Processing, 1999.

Hiyan Alshawi, Srinivas Bangalore, and Shona Douglas. Learning dependency translation models as collections
of finite state head transducers. Computational Linguistics, 26(1):45–60, Mar 2000.

Necip Fazil Ayan and Bonnie Dorr. Going beyond AER: An extensive analysis of word alignments and their
impact on MT. In Proc. of ACL-COLING, pages 9–16, Jul 2006a.

Necip Fazil Ayan and Bonnie J. Dorr. A maximum entropy approach to combining word alignments. In Proc. of
HLT-NAACL, pages 96–103, Jun 2006b.

Necip Fazil Ayan, Bonnie Dorr, and Christof Monz. Neuralign: Combining word alignments using neural net-
works. In Proc. of HLT-EMNLP, pages 65–72, Oct 2005a.

Necip Fazil Ayan, Bonnie Dorr, and Christof Monz. Alignment link projection using transformation-based learn-
ing. In Proc. of HLT-EMNLP, pages 185–192, Oct 2005b.

Rafael E. Banchs, Josep M. Crego, Adrià de Gispert, Patrik Lambert, and José B. Mariño. Statistical machine
translation of euparl data by using bilingual n-grams. In Proc. of ACL Workshop on Building and Using Parallel
Texts, pages 133–136, Jun 2005.

Satanjeev Banerjee and Alon Lavie. METEOR: An automatic metric for MT evaluation with improved correlation
with human judgments. In Proc. of ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine
Translation and/or Summarization, pages 65–72, Jun 2005.

Leonard E. Baum. An inequality and associated maximization technique in statistical estimation of probabilistic
functions of a Markov process. In Proceedings of the Third Symposium on Inequalities, volume 3 of Inequali-
ties, pages 1–8. Academic Press, 1972.

Adam L. Berger, Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, John R. Gillett, John D. Lafferty,
Robert L. Mercer, Harry Printz, and Lubos̆ Ures̆. The Candide system for machine translation. In Proc. of the
ARPA Workshop on Human Language Technology, pages 157–162, Mar 1994.

Adam L. Berger, Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, Andrew S. Kehler, and Robert L.
Mercer. Language translation apparatus and method using context-based translation models, Apr 1996a. United
States Patent 5510981.

40

Adam L. Berger, Stephen A. Della Pietra, and Vincent J. Della Pietra. A maximum entropy approach to natural
language processing. Computational Linguistics, 22(1):39–71, Mar 1996b.

Phil Blunsom and Trevor Cohn. Discriminative word alignment with conditional random fields. In Proc. of
ACL-COLING, pages 65–72, Jul 2006.

Peter F. Brown, John Cocke, Stephen Della Pietra, Vincent J. Della Pietra, Fredrick Jelinek, John D. Lafferty,
Robert L. Mercer, and Paul S. Roossin. A statistical approach to machine translation. Computational Linguis-
tics, 16(2):79–85, Jun 1990.

Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vincent J. Della Pietra, and Jenifer C. Lai. Class-based
n-gram models of natural language. Computational Linguistics, 18(4):467–479, Dec 1992.

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, and Robert L. Mercer. The mathematics of
statistical machine translation: Parameter estimation. Computational Linguistics, 19(2):263–311, Jun 1993.

Andrea Burbank, Marine Carpuat, Stephen Clark, Markus Dreyer, Pamela Fox, Declan Groves, Keith Hall, Mary
Hearne, I. Dan Melamed, Yihai Shen, Andy Way, Ben Wellington, and Dekai Wu. Final report of the 2005
language engineering workshop on statistical machine translation by parsing. Technical report, Johns Hopkins
University Center for Speech and Language Processing, Nov 2005.

Chris Callison-Burch, David Talbot, and Miles Osbourne. Statistical machine translation with word- and sentence-
aligned parallel corpora. In Proc. of ACL, pages 176–183, Jul 2004.

Chris Callison-Burch, Colin Bannard, and Josh Shroeder. Scaling phrase-based statistical machine translation to
larger corpora and longer phrases. In Proc. of ACL, pages 255–262, Jun 2005.

Chris Callison-Burch, Miles Osbourne, and Philipp Koehn. Re-evaluating the role of BLEU in machine translation
research. In Proc. of EACL, pages 249–256, Apr 2006.

Eugene Charniak, Kevin Knight, and Kenji Yamada. Syntax-based language models for statistical machine trans-
lation. In Proc. of MT Summit IX, Sept 2003.

Ciprian Chelba and Frederick Jelinek. Exploiting syntactic structure for language modeling. In Proc. of ACL-
COLING, pages 225–231, Aug 1998.

Stanley F. Chen and Joshua Goodman. An empirical study of smoothing techniques for language modeling.
Technical Report TR-10-98, Computer Science Group, Harvard University, Aug 1998.

Colin Cherry and Dekang Lin. A probability model to improve word alignment. In Proc. of ACL, Jul 2003.
David Chiang. Evaluation of Grammar Formalisms for Applications to Natural Language Processing and Bio-

logical Sequence Analysis. PhD thesis, University of Pennsylvania, 2004.
David Chiang. A hierarchical phrase-based model for statistical machine translation. In Proc. of ACL, pages

263–270, June 2005.
David Chiang. An introduction to synchronous grammars. Part of a tutorial given at ACL 2006, Jul 2006.
David Chiang. Hierarchical phrase-based translation. Computational Linguistics, 33(2), 2007. In press.
David Chiang, Adam Lopez, Nitin Madnani, Christof Monz, Philip Resnik, and Michael Subotin. The Hiero

machine translation system: Extensions, evaluation, and analysis. In Proc. of HLT-EMLP, pages 779–786, Oct
2005.

Kenneth Church and Eduard Hovy. Good applications for crummy machine translation. Machine Translation, 8:
239–258, 1993.

Kenneth Church and Ramesh Patil. Coping with syntactic ambiguity or how to put the block in the box on the
table. Computational Linguistics, 8(3–4):139–149, Jul 1982.

Michael Collins, Jan Hajič, Lance Ramshaw, and Christoph Tillman. A statistical parser for Czech. In Proc. of
ACL, pages 505–512, Jun 1999.

Michael Collins, Philipp Koehn, and Ivona Cuc̆erová. Clause restructuring for statistical machine translation. In
Proc. of ACL, pages 531–540, Jun 2005.

J. N. Darroch and D. Ratcliff. Generalized iterative scaling for log-linear models. Annals of Mathematical
Statistics, 43(5):1470–1480, Oct 1972.

Herve Dejean, Eric Gaussier, Cyril Goutte, and Kenji Yamada. Reducing parameter space for word alignment. In

41

Proc. of HLT-NAACL Workshop on Building and Using Parallel Texts, pages 23–26, May 2003.
A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm.

Journal of the Royal Statistical Society, 39(1):1–38, 1977.
Steve DeNeefe, Kevin Knight, and Hayward H. Chan. Interactively exploring a machine translation model. In

Proc. of ACL (Companion Vol.), pages 97–100, Jun 2005.
George Doddington. Automatic evaluation of machine translation quality using n-gram co-occurrence statistics.

In Proc. of HLT, 2002.
Bonnie J. Dorr, Pamela W. Jordan, and John W. Benoit. A survey of current paradigms in machine translation. In

M. Zelkowitz, editor, Advances in Computers, volume 49, pages 1–68. Academic Press, 1999.
Matthias Eck, Stephan Vogel, and Alex Waibel. Language model adaptation for statistical machine translation

based on information retrieval. In Proc. of LREC, May 2004.
Marcello Federico and Nicola Bertoldi. How many bits are needed to store probabilities for phrase-based transla-

tion? In Proc. of NAACL Workshop on Statistical Machine Translation, pages 94–101, Jun 2006.
George Foster, Roland Kuhn, and Howard Johnson. Phrasetable smoothing for statistical machine translation. In

Proc. of EMNLP, pages 53–61, Jul 2006.
Heidi J. Fox. Phrasal cohesion and statistical machine translation. In Proc. of EMNLP, pages 304–311, Jul 2002.
Alexander Fraser and Daniel Marcu. Semi-supervised training for statistical word alignment. In Proc. of ACL,

pages 769–776, Jun 2006a.
Alexander Fraser and Daniel Marcu. Measuring word alignment quality for statistical machine translation. Tech-

nical Report ISI-TR-616, ISI-University of Southern California, 2006b.
William A. Gale and Kenneth W. Church. Identifying word correspondences in parallel text. In Proc. of Darpa

Workshop on Speech and Natural Language, pages 152–157, 1991.
Michel Galley, Mark Hopkins, Kevin Knight, and Daniel Marcu. What’s in a translation rule? In Proc. of

HLT-NAACL, pages 273–280, May 2004.
Michel Galley, Jonathan Graehl, Kevin Knight, Daniel Marcu, Steve DeNeefe, Wei Wang, and Ignacio Thayer.

Scalable inference and training of context-rich syntactic translation models. In Proc. of ACL, pages 961–968,
Jun 2006.

Ismael Garcı́a Varea, Franz J. Och, Hermann Ney, and Francisco Casacuberta. Refined lexicon models for sta-
tistical machine translation using a maximum entropy approach. In Proc. of ACL-EACL, pages 204–211, Jul
2001.

Ulrich Germann. Greedy decoding for statistical machine translation in almost linear time. In Proc. of HLT-
NAACL, pages 72–79, May 2003.

Ulrich Germann, Michael Jahr, Kevin Knight, Daniel Marcu, and Kenji Yamada. Fast decoding and optimal
decoding for machine translation. In Proc. of ACL-EACL, Jul 2001.

Ulrich Germann, Michael Jahr, Kevin Knight, Daniel Marcu, and Kenji Yamada. Fast and optimal decoding for
machine translation. Artificial Intelligence, 154(1–2):127–143, Apr 2004.

Daniel Gildea. Dependencies vs. constituencies for tree-based alignment. In Proc. of EMNLP, pages 214–221,
Jul 2004.

Sharon Goldwater and David McClosky. Improving statistical MT through morphological analysis. In Proc. of
HLT-EMNLP, pages 676–683, Oct 2005.

Joshua Goodman. Semiring parsing. Computational Linguistics, 25(4):573–605, Dec 1999.
Jonathan Graehl and Kevin Knight. Training tree transducers. In Proc. of HLT-NAACL, pages 105–112, May

2004.
Nizar Habash. Generation-Heavy Hybrid Machine Translation. PhD thesis, University of Maryland, 2003.
John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages, and Computation.

Addison-Wesley, 1979.
Eduard Hovy, Margaret King, and Andrei Popescu-Belis. Principles of context-based machine translation evalu-

ation. Machine Translation, 17(1):43–75, Mar 2002.

42

John Hutchins. Machine translation: A concise history. In Chan Sin Wai, editor, Computer aided translation:
theory and practice. Chinese University of Hong Kong, 2007.

Rebecca Hwa, Philip Resnik, Amy Weinberg, Clara Cabezas, and Okan Kolak. Bootstrapping parsers via syntactic
projection across parallel texts. Natural Language Engineering, 11(3):311–325, Sep 2005.

Abraham Ittycheriah and Salim Roukos. A maximum entropy word aligner for Arabic-English machine transla-
tion. In Proc. of HLT-EMNLP, pages 89–96, Oct 2005.

Frederick Jelinek. Statistical Methods for Speech Recognition. MIT Press, 1998.
Aravind K. Joshi and Yves Schabes. Tree-adjoining grammars. In G. Rozenberg and A. Salomaa, editors,

Handbook of Formal Languages, volume 3, pages 69–124. Springer, Berlin, 1997.
Aravind K. Joshi, K. Vijay-Shanker, and David Weir. The convergence of mildly context-sensitive grammar

formalisms. In Peter Sells, Stuart Shieber, and Tom Wasow, editors, Foundational Issues in Natural Language
Processing, chapter 2, pages 31–81. MIT Press, Cambridge, MA, 1991.

Daniel Jurafsky and James H. Martin. Speech and Language Processing: An Introduction to Natural Language
Processing, Computational Linguistics, and Speech Recognition. Prentice-Hall, 2000.

Katrin Kirchhoff and Mei Yang. Improved language modeling for statistical machine translation. In Proc. of ACL
Workshop on Building and Using Parallel Texts, pages 125–128, Jun 2005.

Kevin Knight. Automating knowledge acquisition for machine translation. AI Magazine, 18(4):81–96, 1997.
Kevin Knight. Decoding complexity in word-replacement translation models. Computational Linguistics, 25(4):

607–615, Dec 1999a.
Kevin Knight. A statistical MT tutorial workbook. Unpublished, 1999b.
Kevin Knight and Yaser Al-Onaizan. Translation with finite-state devices. In Proc. of AMTA, pages 421–437, Oct

1998.
Kevin Knight and Daniel Marcu. Machine translation in the year 2004. In Proc. of ICASSP, Mar 2005.
Philipp Koehn. Pharaoh: A beam search decoder for phrase-based statistical machine translation models. In Proc.

of AMTA, Sep 2004a.
Philipp Koehn. Statistical significance tests for machine translation evaluation. In Proc. of EMNLP, pages 388–

395, Jul 2004b.
Philipp Koehn. PHARAOH, a Beam Search Decoder for Phrase-Based Statistical Machine Translation Models,

User Manual and Description for Version 1.2, Jul 2004c.
Philipp Koehn. Europarl: A parallel corpus for statistical machine translation. In Proc. of MT Summit, 2005.
Philipp Koehn. Statistical Machine Translation. Cambridge University Press, 2007. In press.
Philipp Koehn and Christof Monz. Shared task: Statistical machine translation between european languages. In

Proc. of ACL Workshop on Building and Using Parallel Texts, pages 119–124, Jun 2005.
Philipp Koehn and Christof Monz. Manual and automatic evaluation of machine translation between european

languages. In Proc. of NAACL Workshop on Statistical Machine Translation, pages 102–121, 2006.
Philipp Koehn, Franz Josef Och, and Daniel Marcu. Statistical phrase-based translation. In Proc. of HLT-NAACL,

pages 127–133, May 2003.
Philipp Koehn, Marcello Federico, Wade Shen, Nicola Bertoldi, Ondrej Bojar, Chris Callison-Burch, Brooke

Cowan, Christopher J. Dyer, Hieu Hoang, Richard Zens, Alexandra Constantin, Christine Corbett Moran, and
Evan Herbst. Open source toolkit for statistical machine translation: Factored translation models and confusion
network decoding. Final report of the 2006 language engineering workshop, Johns Hopkins University Center
for Speech and Language Processing, 2006. In preparation.

Alex Kulesza and Stuart M. Shieber. A learning approach to improving sentence-level MT evaluation. In Proc.
of TMI, Oct 2004.

Shankar Kumar and William Byrne. Minimum bayes-risk decoding for statistical machine translation. In Proc.
of HLT-NAACL, pages 169–176, May 2004.

Shankar Kumar, Yonggang Deng, and William Byrne. A weighted finite state transducer translation template
model for statistical machine translation. Natural Language Engineering, 12(1):35–75, Mar 2006.

43

K. Lari and S. J. Young. The estimation of stochastic context-free grammars using the inside-outside algorithm.
Computer Speech and Language, 4(1), 1990.

Percy Liang, Alexandre Bouchard-Côté, Ben Taskar, and Dan Klein. An end-to-end discriminative approach to
machine translation. In Proc. of ACL-COLING, pages 761–768, Jul 2006a.

Percy Liang, Ben Taskar, and Dan Klein. Alignment by agreement. In Proc. of HLT-NAACL, pages 104–111, Jun
2006b.

Chin-Yew Lin and Franz Josef Och. Automatic evaluation of machine translation quality using longest common
subsequence and skip-bigram statistics. In Proc. of ACL, pages 606–613, Jul 2004.

Lucian Lita, Monica Rogati, and Alon Lavie. BLANC: Learning evaluation metrics for MT. In Proc. of HLT-
EMNLP, pages 740–747, Oct 2005.

Adam Lopez and Philip Resnik. Improved HMM alignment models for languages with scarce resources. In Proc.
of ACL Workshop on Building and Using Parallel Texts, pages 83–86, Jun 2005.

Adam Lopez and Philip Resnik. Word-based alignment, phrase-based translation: What’s the link? In Proc. of
AMTA, pages 90–99, Aug 2006.

Adam Lopez, Michael Nossal, Rebecca Hwa, and Philip Resnik. Word-level alignment for multilingual resource
acquisition. In Proc. of LREC Workshop on Linguistic Knowledge Acquisition and Representation – Bootstrap-
ping Annotated Language Data, pages 34–42, Jun 2002.

Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural Language Processing. MIT
Press, Cambridge, MA, May 1999.

Daniel Marcu and William Wong. A phrase-based, joint probability model for statistical machine translation. In
Proc. of EMNLP, pages 133–139, Jul 2002.

Daniel Marcu, Wei Wang, Abdessamad Echihabi, and Kevin Knight. SPMT: Statistical machine translation with
syntactified target language phrases. In Proc. of EMNLP, pages 44–52, Jul 2006.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large annotated corpus of
english: The Penn Treebank. Computational Linguistics, 19(2):314–330, Jun 1993.

Evgeny Matusov, Richard Zens, and Hermann Ney. Symmetric word alignments for statistical machine transla-
tion. In Proc. of COLING, pages 219–225, Jul 2004.

I. Dan Melamed. Automatic construction of clean broad-coverage translation lexicons. In Proc. of AMTA, 1996.
I. Dan Melamed. Manual annotation of translational equivalence: The blinker project. Technical Report 98-07,

University of Pennsylvania Institute for Research in Cognitive Science, 1998.
I. Dan Melamed. Models of translational equivalence among words. Computational Linguistics, 26(2):221–249,

Jun 2000.
I. Dan Melamed. Multitext grammars and synchronous parsers. In Proc. of HLT-NAACL, pages 79–86, May 2003.
I. Dan Melamed. Statistical machine translation by parsing. In Proc. of ACL, pages 654–661, Jul 2004a.
I. Dan Melamed. Algorithms for syntax-aware statistical machine translation. In Proc. of TMI, 2004b.
I. Dan Melamed, Ryan Green, and Joseph P. Turian. Precision and recall of machine translation. In Proc. of

HLT-NAACL (Companion Vol.), pages 61–63, May 2003.
I. Dan Melamed, Giorgio Satta, and Benjamin Wellington. Generalized multitext grammars. In Proc. of ACL,

pages 662–669, Jul 2004.
Bernard Merialdo. Tagging English text with a probabilistic model. Computational Linguistics, 20(2):155–172,

1994.
Rada Mihalcea and Ted Pedersen. An evaluation exercise for word alignment. In Proc. of HLT-NAACL Workshop

on Building and Using Parallel Texts, pages 1–10, May 2003.
Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.
Robert C. Moore. Improving IBM word-alignment model 1. In Proc. of ACL, pages 519–526, Jul 2004.
Robert C. Moore. A discriminative framework for bilingual word alignment. In Proc. of HLT-EMNLP, pages

81–88, Oct 2005a.
Robert C. Moore. Association-based bilingual word alignment. In Proc. of ACL Workshop on Building and Using

44

Parallel Texts, pages 1–8, Jun 2005b.
Sonja Nießen and Hermann Ney. Statistical machine translation with scarce resources using morpho-syntactic

information. Computational Linguistics, 30(2):182–204, Jun 2004.
Sonja Nießen, Stephan Vogel, Hermann Ney, and Christoph Tillman. A DP based search algorithm for statistical

machine translation. In Proc. of ACL-COLING, pages 960–967, Aug 1998.
Douglas W. Oard and Franz Josef Och. Rapid-response machine translation for unexpected languages. In Proc.

of MT Summit IX, Sept 2003.
Douglas W. Oard, David Doermann, Bonnie Dorr, Daqing He, Philip Resnik, Amy Weinberg, William Byrne,

Sanjeev Khudanpur, David Yarowsky, Anton Leuski, Philipp Koehn, and Kevin Knight. Desperately seeking
Cebuano. In Proc. of HLT-NAACL (Companion Vol.), pages 76–78, May 2003.

Franz Josef Och. An efficient method for determining bilingual word classes. In Proc. of EACL, pages 71–76,
Jun 1999.

Franz Josef Och. Minimum error rate training in statistical machine translation. In Proc. of ACL, Jul 2003.
Franz Josef Och. Statistical machine translation: The fabulous present and future. In Proc. of ACL Workshop on

Building and Using Parallel Texts, Jun 2005. Invited talk.
Franz Josef Och and Hermann Ney. Improved statistical alignment models. In Proc. of ACL, pages 440–447, Oct

2000a.
Franz Josef Och and Hermann Ney. A comparison of alignment models for statistical machine translation. In

Proc. of COLING, pages 1086–1090, Jul 2000b.
Franz Josef Och and Hermann Ney. Discriminative training and maximum entropy models for machine transla-

tion. In Proc. of ACL, pages 156–163, Jul 2002.
Franz Josef Och and Hermann Ney. A systematic comparison of various statistical alignment models. Computa-

tional Linguistics, 29(1):19–51, Mar 2003.
Franz Josef Och and Hermann Ney. The alignment template approach to machine translation. Computational

Linguistics, 30(4):417–449, Jun 2004.
Franz Josef Och, Christoph Tillman, and Hermann Ney. Improved alignment models for statistical machine

translation. In Proc. of EMNLP-VLC, pages 20–28, Jun 1999.
Franz Josef Och, Nicola Ueffing, and Hermann Ney. An efficient A* search algorithm for statistical machine

translation. In Proc. of ACL Workshop on Data-Driven Methods in Machine Translation, pages 55–62, Jul
2001.

Franz Josef Och, Daniel Gildea, Sanjeev Khudanpur, Anoop Sarkar, Kenji Yamada, Alex Fraser, Shankar Kumar,
Libin Shen, David Smith, Katherine Eng, Viren Jain, Zhen Jin, and Dragomir Radev. A smorgasbord of features
for statistical machine translation. In Proc. of HLT-NAACL, pages 161–168, May 2004.

Marian Olteanu, Chris Davis, Ionut Volosen, and Dan Moldovan. Phramer - an open source statistical phrase-
based translator. In Proc. of HLT-NAACL Workshop on Statistical Machine Translation, pages 146–149, 2006.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a method for automatic evaluation of
machine translation. In Proc. of ACL, pages 311–318, Jul 2002.

Maja Popovic, Adrià de Gispert, Deepa Gupta, Patrik Lambert, Hermann Ney, José B. Mariño, Marcello Federico,
and Rafael Banchs. Morpho-syntactic information for automatic error analysis of statistical machine translation
output. In Proc. of NAACL Workshop on Statistical Machine Translation, pages 1–6, Jun 2006.

Chris Quirk, Arul Menezes, and Colin Cherry. Dependency treelet translation: Syntactically informed phrasal
SMT. In Proc. of ACL, pages 271–279, Jun 2005.

Adwait Ratnaparkhi. Maximum Entropy Models for Natural Language Ambiguity Resolution. PhD thesis, Uni-
versity of Pennsylvania, 1998.

Philip Resnik and Noah A. Smith. The web as parallel corpus. Computational Linguistics, 29(3):349–380, Sep
2003.

Philip Resnik, Mari Broman Olsen, and Mona Diab. Creating a parallel corpus from the “book of 2000 tongues”.
In Proceedings of the Text Encoding Initiative 10th Anniversary User Conference (TEI-10), 1997.

45

Roni Rosenfeld. Two decades of statistical language modeling: where do we go from here? Proc. of IEEE, 88
(8):1270–1278, Aug 2000.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice-Hall, 2nd edition, 2003.
Charles Schafer and Elliott Franco Drabek. Models for inuktitut-english word alignment. In Proc. of ACL Work-

shop on Building and Using Parallel Texts, pages 79–82, Jun 2005.
Libin Shen, Anoop Sarkar, and Franz Josef Och. Discriminative reranking for machine translation. In Proc. of

HLT-NAACL, pages 177–184, May 2004.
Stuart M. Shieber and Yves Schabes. Synchronous tree-adjoining grammars. In Proc. of COLING, pages 253–

258, 1990.
Michel Simard, Nicola Cancedda, Bruno Cavestro, Marc Dymetman, Eric Gaussier, Cyril Goutte, Kenji Yamada,

Philippe Langlais, and Arne Mauser. Translating with non-contiguous phrases. In Proc. of HLT-EMNLP, pages
755–762, Oct 2005.

David A. Smith and Noah Smith. Bilingual parsing with factored estimation: Using English to parse Korean. In
Proc. of EMNLP, pages 49–56, Jul 2004.

Matthew Snover, Bonnie Dorr, Rich Schwartz, Linnea Micciulla, and John Makhoul. A study of translation edit
rate with targeted human annotation. In Proc. of AMTA, pages 223–231, Aug 2006.

Ben Taskar. Learning Structured Prediction Models: A Large-Margin Approach. PhD thesis, Stanford University,
Dec 2004.

Ben Taskar, Simon Lacoste-Julien, and Dan Klein. A discriminative matching approach to word alignment. In
Proc. of HLT-EMNLP, pages 73–80, Oct 2005.

Christoph Tillman and Hermann Ney. Word reordering and a dynamic programming beam search algorithm for
statistical machine translation. Computational Linguistics, 29(1):98–133, Mar 2003.

Christoph Tillmann and Tong Zhang. A discriminative global training algorithm for statistical MT. In Proc. of
ACL-COLING, pages 721–728, Jul 2006.

Christoph Tillmann, Stephen Vogel, Hermann Ney, and Alex Zubiaga. A DP-based search using monotone align-
ments in statistical translation. In Proc. of ACL-EACL, pages 289–296, 1997.

Kristina Toutanova, H. Tolga Ilhan, and Christopher D. Manning. Extensions to HMM-based statistical word
alignment models. In Proc. of EMNLP, pages 87–94, Jul 2002.

Joseph P. Turian, Luke Shen, and I. Dan Melamed. Evaluation of machine translation and its evaluation. In Proc.
of MT Summit IX, Sep 2003.

Nicola Ueffing and Hermann Ney. Word-level confidence estimation for machine translation using phrase-based
translation models. In Proc. of HLT-EMNLP, pages 763–770, Oct 2005.

Nicola Ueffing, Franz Josef Och, and Hermann Ney. Generation of word graphs in statistical machine translation.
In Proc. of EMNLP, pages 156–163, Jul 2002.

Ashish Venugopal, Andreas Zollmann, and Alex Waibel. Training and evaluating error minimization rules for
statistical machine translation. In Proc. of ACL Workshop on Building and Using Parallel Texts, pages 208–
215, Jun 2005.

Ashish Venugopal, Andreas Zollmann, and Stephan Vogel. An efficient two-pass approach to synchronous-CFG
driven statistical MT. In Proc. of HLT-NAACL, 2007. To appear.

K. Vijay-Shanker, David Weir, and Aravind K. Joshi. Characterizing structural descriptions produced by various
grammatical formalisms. In Proc. of ACL, pages 104–111, 1987.

Andrew J. Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm.
IEEE Transactions on Information Theory, 13(2):260–269, 1967.

Stephan Vogel, Hermann Ney, and Christoph Tillman. HMM-based word alignment in statistical machine trans-
lation. In Proc. of COLING, pages 836–841, Aug 1996.

Jianqiang Wang. Matching Meaning for Cross-Language Information Retrieval. PhD thesis, University of Mary-
land, 2005.

Ye-Yi Wang and Alex Waibel. Decoding algorithm in statistical machine translation. In Proc. of ACL-EACL,

46

pages 366–372, Jul 1997.
Taro Watanabe and Eiichiro Sumita. Bidirectional decoding for statistical machine translation. In Proc. of COL-

ING, pages 1079–1085, Aug 2002.
Warren Weaver. Translation. In William N. Locke and A. Donald Booth, editors, Machine Translation of Lan-

guages: Fourteen Essays, chapter 1, pages 15–23. MIT Press, 1955. Reprint of 1949 memorandum.
Benjamin Wellington, Joseph Turian, Chris Pike, and I. Dan Melamed. Scalable purely-discriminative training

for word and tree transducers. In Proc. of AMTA, pages 251–260, Aug 2006a.
Benjamin Wellington, Sonjia Waxmonsky, and I. Dan Melamed. Empirical lower bounds on the complexity of

translational equivalence. In Proc. of ACL-COLING, pages 977–984, Jun 2006b.
Dekai Wu. Stochastic inversion transduction grammars, with application to segmentation, bracketing, and align-

ment of parallel corpora. In Proc. of IJCAI, pages 1328–1335, Aug 1995a.
Dekai Wu. Grammarless extraction of phrasal translation examples from parallel texts. In Proc. of TMI, pages

354–372, Jul 1995b.
Dekai Wu. A polynomial-time algorithm for statistical machine translation. In Proc. of ACL, pages 152–158, Jun

1996.
Dekai Wu and Hongsing Wong. Machine translation with a stochastic grammatical channel. In Proc. of ACL-

COLING, pages 1408–1415, Aug 1998.
Jia Xu, Richard Zens, and Hermann Ney. Do we need Chinese word segmentation for statistical machine trans-

lation? In Proceedings of the Third SIGHAN Workshop on Chinese Language Learning, pages 122–128, Jul
2004.

Kenji Yamada and Kevin Knight. A syntax-based statistical translation model. In Proc. of ACL-EACL, 2001.
Kenji Yamada and Kevin Knight. A decoder for syntax-based statistical MT. In Proc. of ACL, pages 303–310, Jul

2002.
David Yarowsky and Grace Ngai. Inducing multilingual POS taggers and NP bracketers via robust projection

across aligned corpora. In Proc. of NAACL, pages 200–207, Jun 2001.
David Yarowsky, Grace Ngai, and Richard Wicentowski. Inducing mulilingual text analysis tools via robust

projection across aligned corpora. In Proc. of HLT, pages 109–116, 2001.
Richard Zens and Hermann Ney. A comparative study on reordering constraints in statistical machine translation.

In Proc. of ACL, pages 144–151, Jul 2003.
Richard Zens and Hermann Ney. Improvements in phrase-based statistical machine translation. In Proc. of HLT-

NAACL, pages 257–264, May 2004.
Richard Zens and Hermann Ney. Efficient phrase-table representation for machine translation with applications

to online MT and speech translation. In Proc. of HLT-NAACL, 2007. To appear.
Hao Zhang and Daniel Gildea. Stochastic lexicalized inversion transduction grammar for alignment. In Proc. of

ACL, pages 475–482, Jun 2005.
Hao Zhang, Liang Huang, Daniel Gildea, and Kevin Knight. Synchronous binarization for machine translation.

In Proc. of HLT-NAACL, pages 256–263, Jun 2006a.
Ying Zhang and Stephan Vogel. An efficient phrase-to-phrase alignment model for arbitrarily long phrase and

large corpora. In Proc. of EAMT, May 2005.
Ying Zhang, Almut Silja Hildebrand, and Stephan Vogel. Distributed language modeling for N-best list re-

ranking. In Proc. of EMNLP, pages 216–223, Jul 2006b.

47

